Elå¼bieta Kocioå,ek-Balawejder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/811537/publications.pdf

Version: 2024-02-01

62 papers

811 citations

686830 13 h-index 25 g-index

64 all docs 64
docs citations

64 times ranked

757 citing authors

#	Article	IF	CITATIONS
1	Photocatalytically-assisted oxidative adsorption of As(III) using sustainable multifunctional composite material – Cu2O doped anion exchanger. Journal of Hazardous Materials, 2022, 431, 128529.	6.5	11
2	Effect of the kind of cupric compound deposit on thermal decomposition of anion exchangers. Thermochimica Acta, 2021, 695, 178812.	1.2	5
3	Weakly Hydrated Anion Exchangers Doped with Cu2O and Cu0 Particlesâ€"Thermogravimetric Studies. Materials, 2021, 14, 925.	1.3	6
4	Anomalous effect of Cu2O and CuO deposit on the porosity of a macroreticular anion exchanger. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	7
5	Copper Rich Composite Materials Based on Carboxylic Cation Exchangers and Their Thermal Transformation. Polymers, 2021, 13, 3199.	2.0	2
6	Freeze-drying as the post-processing technique improving adsorptive properties of waste Fe/Mn oxides entrapped in polymer beads towards As(III) and As(V). Separation Science and Technology, 2020, 55, 487-500.	1.3	9
7	Removal of sulfides from water using a hybrid ion exchanger containing manganese(IV) oxide. Separation and Purification Technology, 2020, 231, 115882.	3.9	18
8	Size-Controlled Transformation of Cu2O into Zero Valent Copper within the Matrix of Anion Exchangers via Green Chemical Reduction. Polymers, 2020, 12, 2629.	2.0	8
9	Adsorptive-Oxidative Removal of Sulfides from Water by MnO2-Loaded Carboxylic Cation Exchangers. Materials, 2020, 13, 5124.	1.3	3
10	Cu(II)-Fe(III) oxide doped anion exchangers – Multifunctional composites for arsenite removal from water via As(III) adsorption and oxidation. Journal of Hazardous Materials, 2020, 394, 122527.	6.5	30
11	Deposition of spherical and bracelet-like Cu2O nanoparticles within the matrix of anion exchangers via reduction of tetrachlorocuprate anions. Journal of Environmental Chemical Engineering, 2020, 8, 103722.	3.3	9
12	Evaluation of hybrid anion exchanger containing cupric oxide for As(III) removal from water. Journal of Hazardous Materials, 2019, 370, 117-125.	6.5	37
13	Freeze dried and thermally dried anion exchanger doped with iron(III) (hydr)oxide – Thermogravimetric studies. Thermochimica Acta, 2019, 680, 178359.	1.2	10
14	Cuprite-doped macroreticular anion exchanger obtained by reduction of the Cu(OH)2 deposit. Journal of Environmental Chemical Engineering, 2019, 7, 103198.	3.3	6
15	Cu2O doped gel-type anion exchanger obtained by reduction of brochantite deposit and its antimicrobial activity. Reactive and Functional Polymers, 2019, 141, 42-49.	2.0	9
16	Antimicrobial activity of anion exchangers containing cupric compounds against Enterococcus faecalis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 103-109.	2.3	6
17	Hybrid polymers containing brochantite/tenorite obtained using gel type anion exchanger. Reactive and Functional Polymers, 2018, 124, 12-19.	2.0	11
18	Hybrid ion exchangers containing Fe(III)-Cu(II) binary oxides obtained using macroreticular anion exchanger. Reactive and Functional Polymers, 2018, 127, 129-138.	2.0	6

#	Article	IF	CITATIONS
19	Main characteristic of N-bromo poly(styrene-co-divinylbenzene) sulphonamide acid: a cation exchanger and redox polymer. Polymer Bulletin, 2017, 74, 1849-1861.	1.7	O
20	CuO and Cu2(OH)3Cl loaded gel-type anion exchange hybrid polymers obtained via tetrachlorocuprate ionic form. Journal of Environmental Chemical Engineering, 2017, 5, 5668-5676.	3.3	11
21	Iron(III) (hydr)oxide loaded anion exchange hybrid polymers obtained via tetrachloroferrate ionic formâ€"Synthesis optimization and characterization. Journal of Environmental Chemical Engineering, 2017, 5, 3354-3361.	3.3	15
22	CuO-Loaded Macroreticular Anion Exchange Hybrid Polymers Obtained via Tetrachlorocuprate(II) Ionic Form. International Journal of Polymer Science, 2017, 2017, 1-6.	1.2	13
23	Alginate beads containing water treatment residuals for arsenic removal from waterâ€"formation and adsorption studies. Environmental Science and Pollution Research, 2016, 23, 24527-24539.	2.7	57
24	A macromolecular N-bromosulphonamide as a heterogeneous oxidant in acidic media. Polymer Bulletin, 2016, 73, 1909-1920.	1.7	1
25	Synthesis and characterization of CuO-loaded macroreticular anion exchange hybrid polymer. Reactive and Functional Polymers, 2016, 100, 107-115.	2.0	18
26	Water treatment residuals containing iron and manganese oxides for arsenic removal from water – Characterization of physicochemical properties and adsorption studies. Chemical Engineering Journal, 2016, 294, 210-221.	6.6	181
27	Redox polymer with <i>N,N</i> à€dichlorosulfonamide functional groups as arsenite oxidant in aqueous solutions. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
28	Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Waste Management and Research, 2015, 33, 612-629.	2.2	35
29	Synthesis of polymer-based hybrid materials via Mn(II) oxidation with N-bromosulphonamide polymer and their characterization. Journal of Materials Science, 2015, 50, 4300-4311.	1.7	4
30	Evaluation of ferromagnetic hybrid polymers obtained using cation exchangers. Materials Chemistry and Physics, 2015, 161, 107-115.	2.0	6
31	Synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water. Journal of Colloid and Interface Science, 2015, 460, 154-163.	5.0	18
32	Methods for removal of fluorides from waters Metody usuwania fluork \tilde{A}^3 w z w \tilde{A}^3 d. Przemysl Chemiczny, 2015, 1, 136-144.	0.0	0
33	Succinic acid from raw materials. Prospects for development of its production Kwas bursztynowy z surowc \tilde{A}^3 w naturalnych. Perspektywy rozwoju produkcji. Przemysl Chemiczny, 2015, 1, 181-186.	0.0	0
34	Evaluation of hybrid polymer containing iron oxides as As(III) and As(V) sorbent for drinking water purification. Reactive and Functional Polymers, 2014, 83, 24-32.	2.0	25
35	Oxidation and adsorption of arsenic species by means of hybrid polymer containing manganese oxides. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
36	Hybrid polymer containing ferric oxides obtained using a redox polymer. Part I. Synthesis and characterization. Polimery, 2014, 59, 131-135.	0.4	4

#	Article	IF	CITATIONS
37	Synthesis and Evaluation of a Novel Hybrid Polymer Containing Manganese and Iron Oxides as a Sorbent for As(III) and As(V) Removal. Industrial & Engineering Chemistry Research, 2013, 52, 6453-6461.	1.8	32
38	Oxidation of arsenite in aqueous solutions by redox copolymer with N-bromosulfonamide functional groups. Reactive and Functional Polymers, 2013, 73, 108-113.	2.0	3
39	Synthesis and characterization of polymer-based hybrid materials via oxidation of Mn(II) using N-chlorosulphonamide polymers. Materials Chemistry and Physics, 2012, 132, 870-879.	2.0	5
40	Poly(styrene-divinylbenzene) copolymers with N-chlorosulfonamide functional groups as oxidants for arsenite ions in aqueous media â€" redox studies. Polimery, 2012, 57, 101-105.	0.4	2
41	Oxidation of As(III) in aqueous solutions by means of macroporous redox copolymers with N-chlorosulfonamide pendant groups. Journal of Hazardous Materials, 2011, 189, 794-800.	6.5	9
42	Potentiometric studies of oxidation–reduction reactions with redox copolymers. Journal of Applied Polymer Science, 2008, 107, 2190-2195.	1.3	9
43	Using macroporous N-chlorosulfonamide S/DVB copolymer as an aid to iron removal from water. Pure and Applied Chemistry, 2007, 79, 1491-1503.	0.9	8
44	A macromolecular oxidant, the N,N-dichlorosulfonamide for removal of residual nitrites from aqueous media. Reactive and Functional Polymers, 2006, 66, 609-617.	2.0	5
45	MacromolecularN-Chlorosulfonamide as an Oxidant for Residual Nitrites in Aqueous Media. Industrial & Engineering Chemistry Research, 2005, 44, 8530-8534.	1.8	9
46	Title is missing!. Macromolecular Materials and Engineering, 2002, 287, 604-610.	1.7	5
47	A copolymer with N-chlorosulfonamide pendant groups as oxidant for residual sulfides. Reactive and Functional Polymers, 2002, 52, 89-97.	2.0	11
48	A macromolecular N,N-dichlorosulfonamide as oxidant for residual sulfides. European Polymer Journal, 2002, 38, 953-959.	2.6	8
49	A macromolecular N,N-dichlorosulfonamide as oxidant for cyanides. European Polymer Journal, 2000, 36, 295-302.	2.6	11
50	A macromolecular N,N-dichlorosulfonamide as oxidant for thiocyanates. European Polymer Journal, 2000, 36, 1137-1143.	2.6	13
51	A macromolecular N-chlorosulfonamide as oxidant for thiocyanates. Reactive and Functional Polymers, 1999, 41, 227-233.	2.0	14
52	A redox copolymer containing active bromine as oxidant for thiocyanates. Angewandte Makromolekulare Chemie, 1999, 268, 46-51.	0.3	4
53	A polymer containing the active iodine as oxidant for cyanides. Polimery, 1999, 44, 674-677.	0.4	1
54	A redox copolymer having N-chlorosulfonamide groups for cyanide ion decomposition in dilute aqueous solutions. Reactive and Functional Polymers, 1997, 33, 159-165.	2.0	10

#	Article	IF	CITATIONS
55	Title is missing!. Angewandte Makromolekulare Chemie, 1997, 251, 117-130.	0.3	3
56	Synthesis and basic characterization of a macromolecular dibromoamine: N,N-dibromo-poly(styrene-co-divinylbenzene)sulfonamide. Polymer, 1993, 34, 2883-2888.	1.8	2
57	N-bromo-poly(styrene-co-divinylbenzene) sulphonamide metal salts. Synthesis and basic properties. Angewandte Makromolekulare Chemie, 1991, 188, 85-96.	0.3	12
58	Title is missing!. Angewandte Makromolekulare Chemie, 1989, 169, 119-135.	0.3	20
59	Thermal analysis of macromolecular "Haloamines― Journal of Thermal Analysis, 1988, 33, 1109-1117.	0.7	5
60	Infrared spectra of uniformly chlorosulfonyl-substituted styrene-divinylbenzene resins. Reactive Polymers, Ion Exchangers, Sorbents, 1987, 7, 57-62.	0.1	5
61	Synthesis and main properties of uniformly chlorosulfonyl-substituted styrene-divinylbenzene resins. Reactive Polymers, Ion Exchangers, Sorbents, 1986, 4, 311-316.	0.1	5
62	Investigations on the styrene - divinylbenzene methylenethiol ion exchangers. Polimery, 1985, 30, 439-445.	0.4	4