
Daniel R Goldstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/811513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11, 1173-1179.	15.2	1,291
2	Age-dependent dysregulation of innate immunity. Nature Reviews Immunology, 2013, 13, 875-887.	10.6	847
3	Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. Journal of Clinical Investigation, 2003, 111, 1571-1578.	3.9	265
4	Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nature Reviews Cardiology, 2021, 18, 58-68.	6.1	187
5	The Role of Hyaluronan Degradation Products as Innate Alloimmune Agonists. American Journal of Transplantation, 2006, 6, 2622-2635.	2.6	183
6	Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends in Immunology, 2009, 30, 319-324.	2.9	166
7	Processes of Sterile Inflammation. Journal of Immunology, 2013, 191, 2857-2863.	0.4	159
8	Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice. Journal of Immunology, 2017, 199, 1060-1068.	0.4	153
9	Aging Impairs IFN Regulatory Factor 7 Up-Regulation in Plasmacytoid Dendritic Cells during TLR9 Activation. Journal of Immunology, 2008, 181, 6747-6756.	0.4	138
10	Dual Signaling of MyD88 and TRIF Is Critical for Maximal TLR4-Induced Dendritic Cell Maturation. Journal of Immunology, 2008, 181, 1849-1858.	0.4	133
11	Role of TLRs and DAMPs in allograft inflammation and transplant outcomes. Nature Reviews Nephrology, 2016, 12, 281-290.	4.1	127
12	Defective CD8 T Cell Responses in Aged Mice Are Due to Quantitative and Qualitative Changes in Virus-Specific Precursors. Journal of Immunology, 2012, 188, 1933-1941.	0.4	126
13	Aging Enhances the Basal Production of IL-6 and CCL2 in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 103-109.	1.1	121
14	TH1 Immune Responses to Fully MHC Mismatched Allografts are Diminished in the Absence of MyD88, a Toll-Like Receptor Signal Adaptor Protein. American Journal of Transplantation, 2004, 4, 1429-1439.	2.6	120
15	Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. Journal of Clinical Investigation, 2003, 111, 1571-1578.	3.9	120
16	Aging Promotes Neutrophil-Induced Mortality by Augmenting IL-17 Production during Viral Infection. Cell Host and Microbe, 2009, 6, 446-456.	5.1	118
17	Age-Associated Mitochondrial Dysfunction Accelerates Atherogenesis. Circulation Research, 2020, 126, 298-314.	2.0	118
18	Inflammatory triggers of acute rejection of organ allografts. Immunological Reviews, 2014, 258, 132-144.	2.8	105

#	Article	IF	CITATIONS
19	Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight, 2016, 1, .	2.3	104
20	An essential role for Fas ligand in transplantation tolerance induced by donor bone marrow. Nature Medicine, 1998, 4, 333-335.	15.2	101
21	Absence of Innate MyD88 Signaling Promotes Inducible Allograft Acceptance. Journal of Immunology, 2006, 177, 5307-5316.	0.4	101
22	Nurine myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell, 2006, 5, 473-486.	3.0	90
23	Impact of aging on antigen presentation cell function of dendritic cells. Current Opinion in Immunology, 2013, 25, 535-541.	2.4	90
24	Toll-like receptors and other links between innate and acquired alloimmunity. Current Opinion in Immunology, 2004, 16, 538-544.	2.4	87
25	Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nature Immunology, 2020, 21, 615-625.	7.0	87
26	IL-6 and TNF-Î \pm Synergistically Inhibit Allograft Acceptance. Journal of the American Society of Nephrology: JASN, 2009, 20, 1032-1040.	3.0	80
27	Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunology, 2019, 12, 545-554.	2.7	80
28	Pathophysiology of heart failure and frailty: a common inflammatory origin?. Aging Cell, 2017, 16, 444-450.	3.0	79
29	The Role of Toll-like Receptors in Solid Organ Transplantation. Transplantation, 2006, 81, 497-502.	0.5	69
30	MyD88 Plays a Critical T Cell-Intrinsic Role in Supporting CD8 T Cell Expansion during Acute Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2008, 181, 3804-3810.	0.4	69
31	Increased Levels of Urinary PGE-M, a Biomarker of Inflammation, Occur in Association with Obesity, Aging, and Lung Metastases in Patients with Breast Cancer. Cancer Prevention Research, 2013, 6, 428-436.	0.7	65
32	The Tumor Microenvironment Shapes Lineage, Transcriptional, and Functional Diversity of Infiltrating Myeloid Cells. Cancer Immunology Research, 2014, 2, 655-667.	1.6	63
33	TLR-Dependent IL-4 Production by Invariant Vα14+Jα18+ NKT Cells to Initiate Contact Sensitivity In Vivo. Journal of Immunology, 2005, 175, 6390-6401.	0.4	62
34	Tollâ€Like Receptor Modulation of Murine Cerebral Malaria Is Dependent on the Genetic Background of the Host. Journal of Infectious Diseases, 2007, 196, 1553-1564.	1.9	61
35	Innate immunity and organ transplantation: focus on lung transplantation. Transplant International, 2013, 26, 2-10.	0.8	60
36	Role of Aging and the Immune Response to Respiratory Viral Infections: Potential Implications for COVID-19. Journal of Immunology, 2020, 205, 313-320.	0.4	60

#	Article	IF	CITATIONS
37	Nanoparticle Delivery of Mycophenolic Acid Upregulates PD-L1 on Dendritic Cells to Prolong Murine Allograft Survival. American Journal of Transplantation, 2011, 11, 2582-2592.	2.6	59
38	Tracking the Toll of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2008, 19, 1444-1450.	3.0	55
39	Haptoglobin activates innate immunity to enhance acute transplant rejection in mice. Journal of Clinical Investigation, 2012, 122, 383-387.	3.9	55
40	Impact of aging on viral infections. Microbes and Infection, 2010, 12, 1120-1124.	1.0	54
41	Future Research Directions in Pneumonia. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 256-263.	2.5	54
42	COVID-19 vaccination in our transplant recipients: The time is now. Journal of Heart and Lung Transplantation, 2021, 40, 169-171.	0.3	52
43	Clenbuterol and Anabolic Steroids. Southern Medical Journal, 1998, 91, 780-784.	0.3	48
44	DAP12 Expression in Lung Macrophages Mediates Ischemia/Reperfusion Injury by Promoting Neutrophil Extravasation. Journal of Immunology, 2015, 194, 4039-4048.	0.4	48
45	Aging and the immune response to organ transplantation. Journal of Clinical Investigation, 2017, 127, 2523-2529.	3.9	48
46	Aging Augments IL-17 T-cell Alloimmune Responses. American Journal of Transplantation, 2009, 9, 54-63.	2.6	46
47	Ageâ€associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell, 2016, 15, 766-777.	3.0	41
48	Neonatal B Cells Suppress Innate Toll-Like Receptor Immune Responses and Modulate Alloimmunity. Journal of Immunology, 2007, 179, 1700-1710.	0.4	40
49	Toll-like receptor signaling in transplantation. Current Opinion in Organ Transplantation, 2008, 13, 358-365.	0.8	40
50	Toll like receptors and acute allograft rejection. Transplant Immunology, 2006, 17, 11-15.	0.6	39
51	Activation of the innate immune system by the endogenous ligand hyaluronan. Current Opinion in Organ Transplantation, 2008, 13, 20-25.	0.8	38
52	Role of Toll-Like Receptor–Driven Innate Immunity in Thoracic Organ Transplantation. Journal of Heart and Lung Transplantation, 2005, 24, 1721-1729.	0.3	34
53	Cellular senescence: friend or foe to respiratory viral infections?. European Respiratory Journal, 2020, 56, 2002708.	3.1	32
54	Aging, imbalanced inflammation and viral infection. Virulence, 2010, 1, 295-298.	1.8	30

#	Article	IF	CITATIONS
55	IRF3 contributes to sepsis pathogenesis in the mouse cecal ligation and puncture model. Journal of Leukocyte Biology, 2012, 92, 1261-1268.	1.5	28
56	Direct Antigen Presentation by a Xenograft Induces Immunity Independently of Secondary Lymphoid Organs. Journal of Immunology, 2004, 173, 4377-4386.	0.4	23
57	Efficacy of a vaccine that links viral epitopes to flagellin in protecting aged mice from influenza viral infection. Vaccine, 2011, 29, 8147-8155.	1.7	23
58	Aging Impairs Mitochondrial Function and Mitophagy and Elevates Interleukin 6 Within the Cerebral Vasculature. Journal of the American Heart Association, 2020, 9, e017820.	1.6	21
59	Inflammation and transplantation tolerance. Seminars in Immunopathology, 2011, 33, 111-115.	2.8	20
60	Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages. Aging Cell, 2013, 12, 794-801.	3.0	20
61	Role of Aging on Innate Responses to Viral Infections. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 242-246.	1.7	18
62	Toll-like receptors and their role in transplantation. Frontiers in Bioscience - Landmark, 2007, 12, 4221.	3.0	17
63	TLR9 and IRF3 Cooperate to Induce a Systemic Inflammatory Response in Mice Injected With Liposome:DNA. Molecular Therapy, 2010, 18, 775-784.	3.7	17
64	Haptoglobin Enhances Cardiac Transplant Rejection. Circulation Research, 2015, 116, 1670-1679.	2.0	16
65	Relative Perioperative Bradycardia Does Not Lead to Adverse Outcomes After Cardiac Transplantation. American Journal of Transplantation, 2003, 3, 484-491.	2.6	15
66	CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 61-71.	1.1	15
67	Macrophage migration inhibitory factor enhances influenza-associated mortality in mice. JCI Insight, 2019, 4, .	2.3	15
68	Aging Impairs Recipient T Cell Intrinsic and Extrinsic Factors in Response to Transplantation. PLoS ONE, 2009, 4, e4097.	1.1	15
69	A DIFFERENTIAL REQUIREMENT FOR CD8+ DONOR CELLS IN THE AUGMENTATION OF ALLOGRAFT SURVIVAL BY POSTTRANSPLANTATION ADMINISTRATION OF DONOR SPLEEN CELLS AND DONOR BONE MARROW CELLS1. Transplantation, 2000, 70, 1068-1073.	0.5	14
70	An Age-Specific CD8+ T Cell Pathway That Impairs the Effectiveness of Strategies To Prolong Allograft Survival. Journal of Immunology, 2011, 187, 3631-3640.	0.4	13
71	Influenza virus inoculum volume is critical to elucidate ageâ€dependent mortality in mice. Aging Cell, 2019, 18, e12893.	3.0	13
72	The Identity of Innate Immune Activators in Organ Transplantation: Origins from Within or Exterior to the Host?. American Journal of Transplantation, 2007, 7, 1692-1694.	2.6	12

#	Article	IF	CITATIONS
73	Innate immune mechanisms in transplant allograft vasculopathy. Current Opinion in Organ Transplantation, 2016, 21, 253-257.	0.8	11
74	Age-associated arterial calcification: the current pursuit of aggravating and mitigating factors. Current Opinion in Lipidology, 2020, 31, 265-272.	1.2	11
75	Acute Allograft Rejection Occurs Independently of Inducible Heat Shock Protein-70. Transplantation, 2007, 83, 1513-1517.	0.5	10
76	"The Secret Life of Human Donor Hearts― Circulation: Heart Failure, 2020, 13, e006409.	1.6	10
77	Myeloid interleukin-4 receptor α is essential in postmyocardial infarction healing by regulating inflammation and fibrotic remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H323-H337.	1.5	10
78	Aging Alters the Aortic Proteome in Health and Thoracic Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 1060-1076.	1.1	10
79	Indefinite allograft survival mediated by donor bone marrow is dependent on the presence of a functional CD95 (Fas) gene in recipients. Journal of Heart and Lung Transplantation, 2001, 20, 1132-1135.	0.3	9
80	ENHANCED ALLOGRAFT SURVIVAL INDUCED BY POSTTRANSPLANT DONOR SPLEEN CELL INFUSION OCCURS VIA A MECHANISM THAT IS DISTINCT FROM THE MECHANISM OF ENHANCEMENT BY DONOR BONE MARROW1. Transplantation, 2000, 69, 1020-1023.	0.5	9
81	AN ESSENTIAL ROLE FOR NATURAL KILLER CELLS IN AUGMENTATION OF ALLOGRAFT SURVIVAL MEDIATED BY DONOR SPLEEN CELLS1. Transplantation, 2001, 72, 954-956.	0.5	9
82	PGE ₂ accounts for bidirectional changes in alveolar macrophage self-renewal with aging and smoking. Life Science Alliance, 2020, 3, e202000800.	1.3	9
83	Intravital 2-photon imaging, leukocyte trafficking, and the beating heart. Trends in Cardiovascular Medicine, 2013, 23, 287-293.	2.3	8
84	Treating exuberant, non-resolving inflammation in the lung; Implications for acute respiratory distress syndrome and COVID-19. , 2021, 221, 107745.		8
85	Surgical technique for lung retransplantation in the mouse. Journal of Thoracic Disease, 2013, 5, 321-5.	0.6	8
86	Aged B cells alter immune regulation of allografts in mice. European Journal of Immunology, 2016, 46, 2650-2658.	1.6	7
87	Divergent Roles for Neutrophils. Transplantation, 2018, 102, 542-543.	0.5	7
88	Innovations in cardiac transplantation. Current Opinion in Cardiology, 2017, 32, 336-342.	0.8	6
89	RNA-seq of human T cells after hematopoietic stem cell transplantation identifies <i>Linc00402</i> as a regulator of T cell alloimmunity. Science Translational Medicine, 2021, 13, .	5.8	6
90	T Cell Costimulation Blockade and Organ Transplantation: A Change of Philosophy for Transplant Immunologists?. Journal of Immunology, 2011, 186, 2691-2692.	0.4	5

#	Article	IF	CITATIONS
91	Triple threat: adiposity, aging, atrial fibrillation. Aging, 2017, 9, 2235-2236.	1.4	5
92	To the Editor. European Journal of Immunology, 2006, 36, 2820-2820.	1.6	4
93	Homologous cardiac calcium pump regulators phospholamban and sarcolipin adopt distinct oligomeric states in the membrane. Computational and Structural Biotechnology Journal, 2022, 20, 380-384.	1.9	4
94	A shocking case of pseudoephedrine use. , 1999, 3, 341-342.		3
95	Role of Toll-like receptors in transplantation tolerance. Expert Review of Clinical Immunology, 2007, 3, 139-144.	1.3	3
96	Inactivation of Interleukinâ€4 Receptor α Signaling in Myeloid Cells Protects Mice From Angiotensin II/High Salt–Induced Cardiovascular Dysfunction Through Suppression of Fibrotic Remodeling. Journal of the American Heart Association, 2021, 10, e017329.	1.6	3
97	Toll-like Receptors and Allograft Rejection. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 971-972.	2.5	3
98	Toll-like receptor pathways and innate responses to allografts. Current Opinion in Organ Transplantation, 2007, 12, 5-9.	0.8	2
99	Synergistic Research Between the Center of Arrhythmia Research and the Michigan Biology of Cardiovascular Aging at the University of Michigan. Circulation Research, 2017, 121, 1221-1223.	2.0	2
100	B Cells Are Dispensable for Neonatal Transplant Tolerance Induction. Transplantation, 2009, 88, 874-878.	0.5	1
101	A tough act to follow: Taking JHLT into the future. Journal of Heart and Lung Transplantation, 2021, 40, 1-2.	0.3	1
102	The Evolution of the ISHLT Transplant Registry. Preparing for the Future. Journal of Heart and Lung Transplantation, 2021, 40, 1670-1681.	0.3	1
103	Nanoparticles reduce monocytes within the lungs to improve outcomes after influenza virus infection in aged mice. JCI Insight, 2022, 7, .	2.3	1
104	To the Editor. Human Immunology, 2010, 71, 104.	1.2	0
105	Response to Dr. Schneiders and colleagues. Virulence, 2011, 2, 171-171.	1.8	0
106	The Innate Response to a Transplanted Organ. , 2012, , 54-61.		0
107	Mechanisms of Renal Allograft Rejection. , 2006, , 656-662.		0
108	Failing mitochondria and coronary allograft vasculopathy. Journal of Heart and Lung Transplantation, 2022, , .	0.3	0

#	Article	IF	CITATIONS
109	Abstract 21054: Hematopoietic Factors Are Sufficient to Increase AF in Aged, Atherosclerotic Mice. Circulation, 2017, 136, .	1.6	0