Pengju Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114925/publications.pdf Version: 2024-02-01

DENCULLU

#	Article	IF	CITATIONS
1	Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. Journal of Materials Chemistry C, 2019, 7, 7938-7946.	2.7	128
2	Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105463.	3.8	92
3	A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor. Chemical Engineering Journal, 2018, 353, 115-125.	6.6	89
4	A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 2019, 9, 9534.	1.6	84
5	Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Composites Science and Technology, 2019, 182, 107753.	3.8	65
6	Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polymer Degradation and Stability, 2014, 109, 261-269.	2.7	63
7	A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chemical Engineering Journal, 2021, 426, 130729.	6.6	63
8	Enhanced electromagnetic interference shielding and mechanical properties of segregated polymer/carbon nanotube composite via selective microwave sintering. Composites Science and Technology, 2020, 199, 108355.	3.8	50
9	Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chemical Engineering Journal, 2021, 425, 131699.	6.6	46
10	Facile Fabrication of Multifunctional Poly(ethylene- <i>co</i> -octene)/Carbon Nanotube Foams Based on Tunable Conductive Network. Industrial & Engineering Chemistry Research, 2020, 59, 1934-1943.	1.8	33
11	Selective Microwave Sintering to Prepare Multifunctional Poly(ether imide) Bead Foams Based on Segregated Carbon Nanotube Conductive Network. Industrial & Engineering Chemistry Research, 2020, 59, 5838-5847.	1.8	30
12	Flameâ€retardant mechanism of expandable polystyrene foam with a macromolecular nitrogen–phosphorus intumescent flame retardant. Journal of Applied Polymer Science, 2017, 134, .	1.3	29
13	Fabrication of poly (vinyl alcohol)/graphene nanocomposite foam based on solid state shearing milling and supercritical fluid technology. Materials and Design, 2017, 134, 121-131.	3.3	23
14	Facile preparation of poly(vinyl alcohol)/graphene oxide nanocomposites and their foaming behavior in supercritical carbon dioxide. Composites Part A: Applied Science and Manufacturing, 2018, 107, 675-684.	3.8	23
15	Microwave-assisted foaming and sintering to prepare lightweight high-strength polystyrene/carbon nanotube composite foams with an ultralow percolation threshold. Journal of Materials Chemistry C, 2021, 9, 9702-9711.	2.7	23
16	Preparation of high-strength and lightweight microcellular polysulfone foam with a segregated CNT network for excellent electromagnetic shielding. RSC Advances, 2020, 10, 11994-12003.	1.7	20
17	Microwave-assisted selective heating to rapidly construct a nano-cracked hollow sponge for stretch sensing. Journal of Materials Chemistry C, 2020, 8, 9391-9400.	2.7	19
18	Highly thermally conductive and superior electromagnetic interference shielding composites via in situ microwave-assisted reduction/exfoliation of expandable graphite. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106517.	3.8	19

Pengju Liu

#	Article	IF	CITATIONS
19	A novel method to prepare microcellular poly(vinyl alcohol) foam based on thermal processing and supercritical fluid. Polymers for Advanced Technologies, 2017, 28, 285-292.	1.6	18
20	Facile One-Step Approach to Manufacture Environmentally Friendly Poly(vinyl alcohol) Bead Foam Products. Industrial & Engineering Chemistry Research, 2021, 60, 2962-2970.	1.8	17
21	Microwave-Assisted Sintering to Rapidly Construct a Segregated Structure in Low-Melt-Viscosity Poly(Lactic Acid) for Electromagnetic Interference Shielding. ACS Omega, 2020, 5, 26116-26124.	1.6	16
22	Enhanced Interfacial Adhesion of Polystyrene Bead Foams by Microwave Sintering for Microplastics Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 8812-8820.	1.8	16
23	Fabrication of an ultralight flame-induced high conductivity hybrid sponge based on poly (vinyl) Tj ETQq1 1 0.784	-314 rgBT	/Overlock 1
24	Improved mechanical and electromagnetic interference shielding performance of segregated UHMWPE/CNTs via microwave-assisted sintering. High Performance Polymers, 2020, 32, 1140-1149.	0.8	15
25	Carbon nanotubes in microwave-assisted foaming and sinter molding of high performance polyetherimide bead foam products. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114727.	1.7	14
26	Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide and MXene for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106928.	3.8	13
27	Fabrication and cell morphology of a microcellular poly(ether imide)–carbon nanotube composite foam with a threeâ€dimensional shape. Journal of Applied Polymer Science, 2019, 136, 47501.	1.3	10
28	An ultrafast and clean method to manufacture poly(vinyl alcohol) bead foam products. Polymers for Advanced Technologies, 2021, 32, 210-219.	1.6	10
29	Facile fabrication of chrome-tanned leather wastes/natural rubber composite: Mechanochemical de-crosslinking effect on collagen fibers and chrome complexation enabled in-situ compatibilization. Composites Science and Technology, 2021, 214, 108998.	3.8	10
30	Interfacial flame retardance of Poly(vinyl alcohol) bead foams through surface plasticizing and microwave selective sintering. Applied Surface Science, 2021, 551, 149416.	3.1	8
31	Electrically Conductive and All-Weather Materials from Waste Cross-Linked Polyethylene Cables for Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2022, 61, 3610-3619.	1.8	7
32	Highâ€strength and antistatic <scp>PET</scp> / <scp>CNTs</scp> bead foams prepared by <scp>scCO₂</scp> foaming and microwave sintering. Polymers for Advanced Technologies, 2022, 33, 2211-2220.	1.6	5