Pengju Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114925/publications.pdf Version: 2024-02-01

PENCILLU

#	Article	IF	CITATIONS
1	Electrically Conductive and All-Weather Materials from Waste Cross-Linked Polyethylene Cables for Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2022, 61, 3610-3619.	3.7	7
2	Highâ€strength and antistatic <scp>PET</scp> / <scp>CNTs</scp> bead foams prepared by <scp>scCO₂</scp> foaming and microwave sintering. Polymers for Advanced Technologies, 2022, 33, 2211-2220.	3.2	5
3	Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide and MXene for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106928.	7.6	13
4	An ultrafast and clean method to manufacture poly(vinyl alcohol) bead foam products. Polymers for Advanced Technologies, 2021, 32, 210-219.	3.2	10
5	Facile One-Step Approach to Manufacture Environmentally Friendly Poly(vinyl alcohol) Bead Foam Products. Industrial & Engineering Chemistry Research, 2021, 60, 2962-2970.	3.7	17
6	Interfacial flame retardance of Poly(vinyl alcohol) bead foams through surface plasticizing and microwave selective sintering. Applied Surface Science, 2021, 551, 149416.	6.1	8
7	Enhanced Interfacial Adhesion of Polystyrene Bead Foams by Microwave Sintering for Microplastics Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 8812-8820.	3.7	16
8	Facile fabrication of chrome-tanned leather wastes/natural rubber composite: Mechanochemical de-crosslinking effect on collagen fibers and chrome complexation enabled in-situ compatibilization. Composites Science and Technology, 2021, 214, 108998.	7.8	10
9	Highly thermally conductive and superior electromagnetic interference shielding composites via in situ microwave-assisted reduction/exfoliation of expandable graphite. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106517.	7.6	19
10	A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chemical Engineering Journal, 2021, 426, 130729.	12.7	63
11	Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chemical Engineering Journal, 2021, 425, 131699.	12.7	46
12	Microwave-assisted foaming and sintering to prepare lightweight high-strength polystyrene/carbon nanotube composite foams with an ultralow percolation threshold. Journal of Materials Chemistry C, 2021, 9, 9702-9711.	5.5	23
13	Microwave-Assisted Sintering to Rapidly Construct a Segregated Structure in Low-Melt-Viscosity Poly(Lactic Acid) for Electromagnetic Interference Shielding. ACS Omega, 2020, 5, 26116-26124.	3.5	16
14	Enhanced electromagnetic interference shielding and mechanical properties of segregated polymer/carbon nanotube composite via selective microwave sintering. Composites Science and Technology, 2020, 199, 108355.	7.8	50
15	Carbon nanotubes in microwave-assisted foaming and sinter molding of high performance polyetherimide bead foam products. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114727.	3.5	14
16	Microwave-assisted selective heating to rapidly construct a nano-cracked hollow sponge for stretch sensing. Journal of Materials Chemistry C, 2020, 8, 9391-9400.	5.5	19
17	Selective Microwave Sintering to Prepare Multifunctional Poly(ether imide) Bead Foams Based on Segregated Carbon Nanotube Conductive Network. Industrial & Engineering Chemistry Research, 2020, 59, 5838-5847.	3.7	30
18	Improved mechanical and electromagnetic interference shielding performance of segregated UHMWPE/CNTs via microwave-assisted sintering. High Performance Polymers, 2020, 32, 1140-1149.	1.8	15

Pengju Liu

#	Article	IF	CITATIONS
19	Facile Fabrication of Multifunctional Poly(ethylene- <i>co</i> -octene)/Carbon Nanotube Foams Based on Tunable Conductive Network. Industrial & Engineering Chemistry Research, 2020, 59, 1934-1943.	3.7	33
20	Preparation of high-strength and lightweight microcellular polysulfone foam with a segregated CNT network for excellent electromagnetic shielding. RSC Advances, 2020, 10, 11994-12003.	3.6	20
21	Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Composites Science and Technology, 2019, 182, 107753.	7.8	65
22	A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 2019, 9, 9534.	3.3	84
23	Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105463.	7.6	92
24	Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. Journal of Materials Chemistry C, 2019, 7, 7938-7946.	5.5	128
25	Fabrication and cell morphology of a microcellular poly(ether imide)–carbon nanotube composite foam with a threeâ€dimensional shape. Journal of Applied Polymer Science, 2019, 136, 47501.	2.6	10
26	Facile preparation of poly(vinyl alcohol)/graphene oxide nanocomposites and their foaming behavior in supercritical carbon dioxide. Composites Part A: Applied Science and Manufacturing, 2018, 107, 675-684.	7.6	23
27	Fabrication of an ultralight flame-induced high conductivity hybrid sponge based on poly (vinyl) Tj ETQq1 1 0.78	4314 rgB1 7.0	- /Overlock 1 15
28	A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor. Chemical Engineering Journal, 2018, 353, 115-125.	12.7	89
29	A novel method to prepare microcellular poly(vinyl alcohol) foam based on thermal processing and supercritical fluid. Polymers for Advanced Technologies, 2017, 28, 285-292.	3.2	18
30	Fabrication of poly (vinyl alcohol)/graphene nanocomposite foam based on solid state shearing milling and supercritical fluid technology. Materials and Design, 2017, 134, 121-131.	7.0	23
31	Flameâ€retardant mechanism of expandable polystyrene foam with a macromolecular nitrogen–phosphorus intumescent flame retardant. Journal of Applied Polymer Science, 2017, 134,	2.6	29
32	Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polymer Degradation and Stability, 2014, 109, 261-269.	5.8	63