
Saame Raza Shaikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159059.	1.2	9
2	Enriched Marine Oil Supplement Increases Specific Plasma Specialized Pro-Resolving Mediators in Adults with Obesity. Journal of Nutrition, 2022, 152, 1783-1791.	1.3	15
3	Modeling human heterogeneity of obesity with diversity outbred mice reveals a fat massâ€dependent therapeutic window for resolvin E1. FASEB Journal, 2022, 36, .	0.2	3
4	Potential Mechanisms by Which Hydroxyeicosapentaenoic Acids Regulate Glucose Homeostasis in Obesity. Advances in Nutrition, 2022, 13, 2316-2328.	2.9	4
5	Hormonal Dysregulation and Unbalanced Specialized Proâ€Resolving Mediator Biosynthesis Contribute toward Impaired B Cell Outcomes in Obesity. Molecular Nutrition and Food Research, 2021, 65, e1900924.	1.5	12
6	Metabolic and functional impairment of CD8+ T cells from the lungs of influenza-infected obese mice. Journal of Leukocyte Biology, 2021, 111, 147-159.	1.5	9
7	Synergizing Mouse and Human Studies to Understand the Heterogeneity of Obesity. Advances in Nutrition, 2021, 12, 2023-2034.	2.9	13
8	Polyunsaturated fatty acids, specialized pro-resolving mediators, and targeting inflammation resolution in the age of precision nutrition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158936.	1.2	15
9	SPM Pathway Marker Analysis of the Brains of Obese Mice in the Absence and Presence of Eicosapentaenoic Acid Ethyl Esters. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 175, 102360.	1.0	3
10	Resolvin E1-ChemR23 Axis Regulates the Hepatic Metabolic and Inflammatory Transcriptional Landscape in Obesity at the Whole Genome and Exon Level. Frontiers in Nutrition, 2021, 8, 799492.	1.6	9
11	Omega-3s are a traffic light for T cells: lipid metabolites and membrane-related events at the crossroads of inflammation. Cardiovascular Research, 2020, 116, 874-875.	1.8	2
12	Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain, Behavior, and Immunity, 2020, 85, 21-28.	2.0	45
13	Obesity-Driven Deficiencies of Specialized Pro-resolving Mediators May Drive Adverse Outcomes During SARS-CoV-2 Infection. Frontiers in Immunology, 2020, 11, 1997.	2.2	30
14	The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Communications Biology, 2020, 3, 389.	2.0	43
15	Do Eicosapentaenoic Acid and Docosahexaenoic Acid Have the Potential to Compete against Each Other?. Nutrients, 2020, 12, 3718.	1.7	29
16	Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB Journal, 2020, 34, 10640-10656.	0.2	43
17	Deficit of resolution receptor magnifies inflammatory leukocyte directed cardiorenal and endothelial dysfunction with signs of cardiomyopathy of obesity. FASEB Journal, 2020, 34, 10560-10573.	0.2	13
18	Improved quantification of lipid mediators in plasma and tissues by liquid chromatography tandem mass spectrometry demonstrates mouse strain specific differences. Prostaglandins and Other Lipid Mediators, 2020, 151, 106483.	1.0	13

#	Article	IF	CITATIONS
19	Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 135, 160-171.	0.9	13
20	Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Science Advances, 2019, 5, eaax8352.	4.7	66
21	The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1039-1052.	1.2	55
22	Frontline Science: A reduction in DHA-derived mediators in male obesity contributes toward defects in select B cell subsets and circulating antibody. Journal of Leukocyte Biology, 2019, 106, 241-257.	1.5	38
23	Specialized Pro-Resolving Lipid Mediators Regulate Ozone-Induced Pulmonary and Systemic Inflammation. Toxicological Sciences, 2018, 163, 466-477.	1.4	42
24	DHA Modifies the Size and Composition of Raftlike Domains: A Solid-State 2H NMR Study. Biophysical Journal, 2018, 114, 380-391.	0.2	28
25	All n-3 PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and DPA. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1125-1134.	1.4	41
26	Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1985-1993.	1.4	65
27	17β-Estradiol Directly Lowers Mitochondrial Membrane Microviscosity and Improves Bioenergetic Function in Skeletal Muscle. Cell Metabolism, 2018, 27, 167-179.e7.	7.2	122
28	Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. Journal of Biological Chemistry, 2018, 293, 466-483.	1.6	44
29	Effects of fish oils on ex vivo B-cell responses of obese subjects upon BCR/TLR stimulation: a pilot study. Journal of Nutritional Biochemistry, 2018, 53, 72-80.	1.9	18
30	Proteolipid domains form in biomimetic and cardiac mitochondrial vesicles and are regulated by cardiolipin concentration but not monolyso-cardiolipin. Journal of Biological Chemistry, 2018, 293, 15933-15946.	1.6	12
31	Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Advances in Nutrition, 2018, 9, 247-262.	2.9	59
32	Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology, 2018, 43, 2165-2179.	2.8	29
33	High Fat Diet Dysregulates Hypothalamicâ€Pituitary Axis Gene Expression Levels which are Differentially Rescued by EPA and DHA Ethyl Esters. Molecular Nutrition and Food Research, 2018, 62, e1800219.	1.5	4
34	Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants. JCI Insight, 2018, 3, .	2.3	64
35	B Cell Activity Is Impaired in Human and Mouse Obesity and Is Responsive to an Essential Fatty Acid upon Murine Influenza Infection. Journal of Immunology, 2017, 198, 4738-4752.	0.4	115
36	Murine diet-induced obesity remodels cardiac and liver mitochondrial phospholipid acyl chains with differential effects on respiratory enzyme activity. Journal of Nutritional Biochemistry, 2017, 45, 94-103.	1.9	31

#	Article	IF	CITATIONS
37	Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 257-267.	1.4	25
38	Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of <i>Staphylococcus aureus</i> Pyruvate Carboxylase. Biochemistry, 2017, 56, 3492-3506.	1.2	12
39	Estrogen receptor \hat{I}_{\pm} activation enhances its cell surface localization and improves myocardial redox status in ovariectomized rats. Life Sciences, 2017, 182, 41-49.	2.0	21
40	<scp>RAR</scp> α/ <scp>RXR</scp> synergism potentiates retinoid responsiveness in cutaneous Tâ€cell lymphoma cell lines. Experimental Dermatology, 2017, 26, 1004-1011.	1.4	5
41	Mitochondrial function as a therapeutic target in heart failure. Nature Reviews Cardiology, 2017, 14, 238-250.	6.1	525
42	Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1360-H1370.	1.5	34
43	Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. Journal of Leukocyte Biology, 2016, 100, 985-997.	1.5	15
44	Membrane Disordering by Eicosapentaenoic Acid in B Lymphomas Is Reduced by Elongation to Docosapentaenoic Acid as Revealed with Solid-State Nuclear Magnetic Resonance Spectroscopy of Model Membranes. Journal of Nutrition, 2016, 146, 1283-1289.	1.3	9
45	Short-term consumption of n-3 PUFAs increases murine IL-5 levels, but IL-5 is not the mechanistic link between n-3 fatty acids and changes in B-cell populations. Journal of Nutritional Biochemistry, 2016, 28, 30-36.	1.9	8
46	N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. European Journal of Pharmacology, 2016, 785, 10-17.	1.7	39
47	N-3 Polyunsaturated Fatty Acids,ÂLipid Microclusters, andÂVitaminÂE. Current Topics in Membranes, 2015, 75, 209-231.	0.5	22
48	Marine fish oils are not equivalent with respect to B-cell membrane organization and activation. Journal of Nutritional Biochemistry, 2015, 26, 369-377.	1.9	20
49	A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 100, 1-4.	1.0	3
50	How polyunsaturated fatty acids modify molecular organization in membranes: Insight from NMR studies of model systems. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 211-219.	1.4	156
51	Eicosapentaenoic and docosahexaenoic acid ethyl esters differentially enhance B-cell activity in murine obesity. Journal of Lipid Research, 2014, 55, 1420-1433.	2.0	52
52	Reduction of Early Reperfusion Injury With the Mitochondria-Targeting Peptide Bendavia. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 121-132.	1.0	88
53	Do Fish Oil Omega-3 Fatty Acids Enhance Antioxidant Capacity and Mitochondrial Fatty Acid Oxidation in Human Atrial Myocardium <i>via</i> PPARγ Activation?. Antioxidants and Redox Signaling, 2014, 21, 1156-1163.	2.5	72
54	Increasing Mitochondrial Membrane Phospholipid Content Lowers the Enzymatic Activity of Electron Transport Complexes. Biochemistry, 2014, 53, 5589-5591.	1.2	23

#	Article	IF	CITATIONS
55	Increasing levels of cardiolipin differentially influence packing of phospholipids found in the mitochondrial inner membrane. Biochemical and Biophysical Research Communications, 2014, 450, 366-371.	1.0	30
56	Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids. Prostaglandins Leukotrienes and Essential Fatty Acids, 2013, 88, 21-25.	1.0	23
57	9-cis-Retinoic acid promotes cell adhesion through integrin dependent and independent mechanisms across immune lineages. Journal of Nutritional Biochemistry, 2013, 24, 832-841.	1.9	7
58	Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. , 2013, 140, 258-266.		43
59	Fish oil disrupts MHC class II lateral organization on the B-cell side of the immunological synapse independent of B-T cell adhesion. Journal of Nutritional Biochemistry, 2013, 24, 1810-1816.	1.9	20
60	Dendritic cell activation, phagocytosis and <scp>CD</scp> 69 expression on cognate T cells are suppressed by nâ€3 longâ€chain polyunsaturated fatty acids. Immunology, 2013, 139, 386-394.	2.0	34
61	DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains. Journal of Nutritional Biochemistry, 2013, 24, 188-195.	1.9	14
62	n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. Journal of Lipid Research, 2013, 54, 3130-3138.	2.0	52
63	DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function. Journal of Leukocyte Biology, 2013, 93, 463-470.	1.5	69
64	EPA and DHA do not exert equivalent effects on B lymphocyte plasma membrane organization: Implications for developing biomarkers of fish oil for targeting B cell immunity. FASEB Journal, 2013, 27, 643.4.	0.2	0
65	Fish oil disrupts B cell MHC class II lateral organization in the murine immunological synapse. FASEB Journal, 2013, 27, lb403.	0.2	0
66	Fish oil differentially regulates B cell and dendritic cell activation in response to a Tâ€independent antigen. FASEB Journal, 2013, 27, 643.3.	0.2	0
67	DHAâ€enriched fish oil modulates B cell function and modifies clustering of lipid microdomains. FASEB Journal, 2013, 27, 123.6.	0.2	Ο
68	Fish oil increases raft size and membrane order of B cells accompanied by differential effects on function. Journal of Lipid Research, 2012, 53, 674-685.	2.0	92
69	Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed nâ~'3 polyunsaturated fatty acids. Biochemical Journal, 2012, 441, 359-366.	1.7	49
70	High dose of an n-3 polyunsaturated fatty acid diet lowers activity of C57BL/6 mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 2012, 86, 137-140.	1.0	20
71	nâ~'3 Polyunsaturated fatty acids exert immunomodulatory effects on lymphocytes by targeting plasma membrane molecular organization. Molecular Aspects of Medicine, 2012, 33, 46-54.	2.7	61
72	Docosahexaenoic and Eicosapentaenoic Acids Segregate Differently between Raft and Nonraft Domains. Biophysical Journal, 2012, 103, 228-237.	0.2	154

#	Article	IF	CITATIONS
73	N-3 fatty acids and membrane microdomains: From model membranes to lymphocyte function. Prostaglandins Leukotrienes and Essential Fatty Acids, 2012, 87, 205-208.	1.0	27
74	Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. Journal of Nutritional Biochemistry, 2012, 23, 101-105.	1.9	108
75	nâ€3 PUFAs reorganize B cell membrane rafts and molecular order accompanied by differential effects on B cell function. FASEB Journal, 2012, 26, 127.3.	0.2	Ο
76	Membrane Raft Organization Is More Sensitive to Disruption by (n-3) PUFA Than Nonraft Organization in EL4 and B Cells. Journal of Nutrition, 2011, 141, 1041-1048.	1.3	52
77	n-3 PUFA improves fatty acid composition, prevents palmitate-induced apoptosis, and differentially modifies B cell cytokine secretion in vitro and ex vivo. Journal of Lipid Research, 2010, 51, 1284-1297.	2.0	65
78	Zebrafish Get Ordered: New Doors Open for Imaging Membrane Organization. Biophysical Journal, 2010, 99, 1-2.	0.2	34
79	Diet-induced docosahexaenoic acid non-raft domains and lymphocyte function. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 159-164.	1.0	12
80	High fat diets enriched in nâ€3 polyunsaturated fatty acids do not suppress B cell activation but increase spleen size and accumulation of adipose tissue and lower liver triglycerides. FASEB Journal, 2010, 24, 723.7.	0.2	0
81	Docosahexaenoic acid disrupts lipid raft clustering and enhances proliferation and survival of EL4 lymphomas. FASEB Journal, 2010, 24, 723.2.	0.2	0
82	Cutting Edge: Phosphatidylinositol 4,5-Bisphosphate Concentration at the APC Side of the Immunological Synapse Is Required for Effector T Cell Function. Journal of Immunology, 2009, 182, 5179-5182.	0.4	18
83	Docosahexaenoic Acid Modifies the Clustering and Size of Lipid Rafts and the Lateral Organization and Surface Expression of MHC Class I of EL4 Cells. Journal of Nutrition, 2009, 139, 1632-1639.	1.3	105
84	Oleic- and docosahexaenoic acid-containing phosphatidylethanolamines differentially phase separate from sphingomyelin. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2421-2426.	1.4	36
85	High fat diets increase TCR nanoâ€scale clustering. FASEB Journal, 2009, 23, 907.2.	0.2	0
86	Plasma membrane lipid diffusion and composition of sea urchin egg membranes vary with ocean temperature. Chemistry and Physics of Lipids, 2008, 151, 62-65.	1.5	8
87	Polyunsaturated fatty acids and membrane organization: elucidating mechanisms to balance immunotherapy and susceptibility to infection. Chemistry and Physics of Lipids, 2008, 153, 24-33.	1.5	67
88	Immunosuppressive effects of polyunsaturated fatty acids on antigen presentation by human leukocyte antigen class I molecules. Journal of Lipid Research, 2007, 48, 127-138.	2.0	57
89	Molecular Organization of Cholesterol in Unsaturated Phosphatidylethanolamines:Â X-ray Diffraction and Solid State2H NMR Reveal Differences with Phosphatidylcholines. Journal of the American Chemical Society, 2006, 128, 5375-5383.	6.6	83
90	Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. American Journal of Clinical Nutrition, 2006, 84, 1277-1289.	2.2	155

#	Article	IF	CITATIONS
91	Membranes are not just rafts. Chemistry and Physics of Lipids, 2006, 144, 1-3.	1.5	66
92	Interaction of Polyunsaturated Fatty Acids with Cholesterol: A Role in Lipid Raft Phase Separation. Macromolecular Symposia, 2005, 219, 73-84.	0.4	6
93	Inhibition of phenylephrine-induced cardiac hypertrophy by docosahexaenoic acid. Journal of Cellular Biochemistry, 2004, 92, 1141-1159.	1.2	28
94	Oleic and Docosahexaenoic Acid Differentially Phase Separate from Lipid Raft Molecules: A Comparative NMR, DSC, AFM, and Detergent Extraction Study. Biophysical Journal, 2004, 87, 1752-1766.	0.2	132
95	Omega 3-Fatty Acids: Health Benefits and Cellular Mechanisms of Action. Mini-Reviews in Medicinal Chemistry, 2004, 4, 859-871.	1.1	109
96	Order from disorder, corralling cholesterol with chaotic lipidsThe role of polyunsaturated lipids in membrane raft formation. Chemistry and Physics of Lipids, 2004, 132, 79-88.	1.5	145
97	Acyl chain unsaturation in PEs modulates phase separation from lipid raft molecules. Biochemical and Biophysical Research Communications, 2003, 311, 793-796.	1.0	31
98	Monounsaturated PE Does Not Phase-Separate from the Lipid Raft Molecules Sphingomyelin and Cholesterol:  Role for Polyunsaturation?. Biochemistry, 2002, 41, 10593-10602.	1.2	97
99	Formation of Inverted Hexagonal Phase in SDPE as Observed by Solid-State 31P NMR. Biochemical and Biophysical Research Communications, 2001, 286, 758-763.	1.0	22
100	Lipid phase separation in phospholipid bilayers and monolayers modeling the plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 317-328.	1.4	77