
Vincent Allard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437, 529-533.	27.8	3,245
2	Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 2007, 13, 634-651.	9.5	486
3	Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems and Environment, 2007, 121, 121-134.	5.3	409
4	Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment, 2007, 121, 93-120.	5.3	305
5	Deviation from the grain protein concentration–grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. Journal of Experimental Botany, 2010, 61, 4303-4312.	4.8	263
6	Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture, Ecosystems and Environment, 2007, 121, 135-152.	5.3	262
7	Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2014, 155, 213-223.	5.1	244
8	Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research, 2011, 123, 139-152.	5.1	243
9	The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O) Tj ETQq1	1 <u>1 9</u> .7843	814 rgBT /0
10	Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. Journal of Experimental Botany, 2011, 62, 3621-3636.	4.8	193
11	Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	177
12	Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Global Change Biology, 2008, 14, 714-725.	9.5	163
13	Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theoretical and Applied Genetics, 2012, 124, 597-611.	3.6	90
14	Short and long-term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biology and Biochemistry, 2006, 38, 1178-1187.	8.8	82
15	Post-Flowering Nitrate Uptake in Wheat Is Controlled by N Status at Flowering, with a Putative Major Role of Root Nitrate Transporter NRT2.1. PLoS ONE, 2015, 10, e0120291.	2.5	75
16	Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. Journal of Experimental Botany, 2014, 65, 5849-5865.	4.8	74
17	Increased Quantity and Quality of Coarse Soil Organic Matter Fraction at Elevated CO2 in a Grazed Grassland are a Consequence of Enhanced Root Growth Rate and Turnover. Plant and Soil, 2005, 276, 49-60.	3.7	70
18	<i>VERNALIZATION1</i> controls developmental responses of winter wheat under high ambient temperatures. Development (Cambridge), 2019, 146, .	2.5	58

VINCENT ALLARD

#	Article	lF	CITATIONS
19	Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat. European Journal of Agronomy, 2012, 42, 22-33.	4.1	56
20	Acclimation of Leaf Nitrogen to Vertical Light Gradient at Anthesis in Wheat Is a Whole-Plant Process That Scales with the Size of the Canopy Â. Plant Physiology, 2012, 160, 1479-1490.	4.8	54
21	Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Molecular Breeding, 2013, 31, 587-599.	2.1	49
22	Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS ONE, 2019, 14, e0213390.	2.5	48
23	Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics, 2017, 130, 1735-1752.	3.6	46
24	Effects of ambient temperature in association with photoperiod on phenology and on the expressions of major plant developmental genes in wheat (<scp><i>Triticum aestivum</i></scp> L.). Plant, Cell and Environment, 2017, 40, 1629-1642.	5.7	44
25	Different grain-filling rates explain grain-weight differences along the wheat ear. PLoS ONE, 2018, 13, e0209597.	2.5	41
26	Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status. European Journal of Agronomy, 2013, 46, 68-76.	4.1	37
27	Bread Wheat (Triticum aestivum L.) Grain Protein Concentration Is Related to Early Post-Flowering Nitrate Uptake under Putative Control of Plant Satiety Level. PLoS ONE, 2016, 11, e0149668.	2.5	37
28	The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. Journal of Experimental Botany, 2012, 63, 847-857.	4.8	35
29	Nitrogen cycling in grazed pastures at elevated CO2 : N returns by ruminants. Global Change Biology, 2003, 9, 1731-1742.	9.5	33
30	Elevated CO2 effects on decomposition processes in a grazed grassland. Global Change Biology, 2004, 10, 1553-1564.	9.5	26
31	Linking genetic maps and simulation to optimize breeding for wheat flowering time in current and future climates. Crop Science, 2020, 60, 678-699.	1.8	20
32	Management and Breeding Strategies for the Improvement of Grain and Oil Quality. , 2009, , 387-421.		17
33	Wheat individual grain-size variance originates from crop development and from specific genetic determinism. PLoS ONE, 2020, 15, e0230689.	2.5	17
34	Impacts of Elevated CO2 on a Grassland Grazed by Sheep: the New Zealand FACE Experiment. , 2006, , 157-171.		14
35	A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat. Field Crops Research, 2019, 242, 107571.	5.1	12
36	Plant functional trait variability and trait syndromes among wheat varieties: the footprint of artificial selection. Journal of Experimental Botany, 2021, 72, 1166-1180.	4.8	12

#	Article	IF	CITATIONS
37	Genetic Analysis of Platform-Phenotyped Root System Architecture of Bread and Durum Wheat in Relation to Agronomic Traits. Frontiers in Plant Science, 2022, 13, 853601.	3.6	8

Herbivory and Nutrient Cycling. Advances in Agroecology, 2006, , 151-165.

0.3 0