Shengyan Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114298/publications.pdf

Version: 2024-02-01

159585 149698 3,218 64 30 56 citations h-index g-index papers 67 67 67 5530 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles. Journal of Colloid and Interface Science, 2022, 605, 373-384.	9.4	34
2	Fe Singleâ€Atom Catalyst for Efficient and Rapid Fentonâ€Like Degradation of Organics and Disinfection against Bacteria. Small, 2022, 18, e2104941.	10.0	53
3	Three-phase interface photocatalysis for the enhanced degradation and antibacterial property. Journal of Colloid and Interface Science, 2022, 612, 194-202.	9.4	14
4	Monitoring Clinical–Pathological Grading of Hepatocellular Carcinoma Using MicroRNA-Guided Semiconducting Polymer Dots. ACS Applied Materials & Interfaces, 2022, 14, 7717-7730.	8.0	5
5	Phase transition and luminescent properties of the Eu3+ ions-doped NaYF ₄ :Yb, Er nanoparticles. Functional Materials Letters, 2022, 15, .	1.2	3
6	Recent advances in the development and applications of conjugated polymer dots. Journal of Materials Chemistry B, 2022, 10, 2995-3015.	5.8	15
7	Room-temperature synthesis of Ag ₃ PO ₄ nanoparticles with the assistance of trisodium citrate for photocatalytic dye degradation. New Journal of Chemistry, 2022, 46, 8874-8880.	2.8	4
8	Carbonized lotus leaf/ZnO/Au for enhanced synergistic mechanical and photocatalytic bactericidal activity under visible light irradiation. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112468.	5.0	8
9	Highly efficient photocatalytic nitrogen fixation on bio-inspired triphase interface with improved diffusion of nitrogen. Journal of Cleaner Production, 2022, 360, 132162.	9.3	11
10	Bi@H-TiO2/B-C3N4 heterostructure for enhanced photocatalytic hydrogen generation activity under visible light. Journal of Industrial and Engineering Chemistry, 2022, 111, 509-518.	5.8	7
11	Facile synthesis of kermesinus BiOI with oxygen vacancy for efficient hydrogen generation. Chemical Engineering Journal, 2021, 420, 127607.	12.7	39
12	Measuring Cellular Uptake of Polymer Dots for Quantitative Imaging and Photodynamic Therapy. Analytical Chemistry, 2021, 93, 7071-7078.	6.5	11
13	Bioinspired Hydrophilic–Hydrophobic Janus Composites for Highly Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2021, 13, 19467-19475.	8.0	53
14	In situ monitoring of circulating tumor cell adhered on three-dimensional graphene/ZnO macroporous structure by resistance change and electrochemical impedance spectroscopy. Electrochimica Acta, 2021, 393, 139093.	5.2	9
15	Transition metal oxide and chalcogenide-based nanomaterials for antibacterial activities: an overview. Nanoscale, 2021, 13, 6373-6388.	5.6	30
16	Soluble polyfluorene dots as photocatalyst for light-driven methylene blue degradation and hydrogen generation. New Journal of Chemistry, 2021, 45, 1423-1429.	2.8	5
17	Photoelectrochemical immunosensor for sensitive detection of alpha-fetoprotein based on a graphene honeycomb film. Journal of Colloid and Interface Science, 2020, 580, 583-591.	9.4	34
18	Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property. Chemical Engineering Journal, 2020, 398, 125575.	12.7	53

#	Article	IF	Citations
19	Arbitrary-shaped reduced graphene oxide aerogels via an unsaturated water vapor reduction. Carbon, 2020, 168, 169-179.	10.3	16
20	Bio-inspired hierarchical assembly of Au/ZnO decorated carbonized spinach leaves with enhanced photocatalysis performance. Journal of Alloys and Compounds, 2020, 829, 154393.	5.5	14
21	Synthesis and characterization of LiLuF ₄ :Er ³⁺ and LiLuF ₄ :Yb ³⁺ ,Er ³⁺ exhibiting upconversion fluorescence pumped by a 1560 nm laser. New Journal of Chemistry, 2020, 44, 8554-8558.	2.8	4
22	Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property. Journal of Colloid and Interface Science, 2019, 535, 516-523.	9.4	40
23	Ultrabright Polymer-Dot Transducer Enabled Wireless Glucose Monitoring <i>via</i> a Smartphone. ACS Nano, 2018, 12, 5176-5184.	14.6	97
24	ZnO nanodisks decorated with Au nanorods for enhanced photocurrent generation and photocatalytic activity. New Journal of Chemistry, 2018, 42, 3315-3321.	2.8	21
25	Spiky nanohybrids of TiO ₂ /Au nanorods for enhanced hydrogen evolution and photocurrent generation. Inorganic Chemistry Frontiers, 2018, 5, 626-634.	6.0	9
26	Fabrication of the graphene honeycomb structure as a scaffold for the study of cell growth. New Journal of Chemistry, 2018, 42, 6299-6304.	2.8	3
27	Hydrogen production from methanol aqueous solution by ZnO/Zn(OH) < sub > 2 < /sub > macrostructure photocatalysts. RSC Advances, 2018, 8, 11395-11402.	3.6	22
28	Fabrication and photoelectric properties of bio-inspired honeycomb film based on semiconducting polymer. Journal of Colloid and Interface Science, 2018, 512, 1-6.	9.4	11
29	Bioinspired self-standing macroporous Au/ZnO sponges for enhanced photocatalysis. Journal of Colloid and Interface Science, 2018, 514, 40-48.	9.4	27
30	Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Mikrochimica Acta, 2018, 185, 397.	5.0	23
31	Facile fabrication of TiO2/Graphene composite foams with enhanced photocatalytic properties. Journal of Alloys and Compounds, 2017, 703, 251-257.	5.5	28
32	Bright green-emitting hydrophilic conjugated polymer nanoparticles with different surface charges for cellular imaging. Journal of Materials Science, 2017, 52, 8465-8471.	3.7	4
33	A self-standing macroporous Au/ZnO/reduced graphene oxide foam for recyclable photocatalysis and photocurrent generation. Electrochimica Acta, 2017, 246, 35-42.	5.2	45
34	Enhanced Photocurrent Generation of Graphene/Au@ <scp>ZnO</scp> Honeycomb Film. Chinese Journal of Chemistry, 2017, 35, 1627-1632.	4.9	3
35	Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy. Biomaterials, 2017, 144, 42-52.	11.4	107
36	A Dendritic Supramolecular Complex as Uniform Hybrid Micelle with Dual Structure for Bimodal In Vivo Imaging. Chemistry - A European Journal, 2017, 23, 2802-2810.	3.3	24

3

#	Article	IF	Citations
37	Bright Polymer Dots Tracking Stem Cell Engraftment and Migration to Injured Mouse Liver. Theranostics, 2017, 7, 1820-1834.	10.0	46
38	Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Biomacromolecules, 2016, 17, 2128-2136.	5.4	94
39	Temperature dependence of the photoluminescence from ZnO microrods prepared by a float zone method. CrystEngComm, 2016, 18, 3130-3135.	2.6	11
40	<i>In Vivo</i> Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer. ACS Nano, 2016, 10, 6769-6781.	14.6	132
41	Photocatalysis of NaYF ₄ :Yb,Er/CdSe composites under 1560 nm laser excitation. RSC Advances, 2016, 6, 8127-8133.	3.6	19
42	Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Applied Catalysis B: Environmental, 2016, 187, 367-374.	20.2	100
43	Self-assembly of 2D MnO ₂ nanosheets into high-purity aerogels with ultralow density. Chemical Science, 2016, 7, 1926-1932.	7.4	40
44	Bright red-emitting polymer dots for specific cellular imaging. Journal of Materials Science, 2015, 50, 5571-5577.	3.7	17
45	Oneâ€Step Synthesis of Singleâ€Layer MnO ₂ Nanosheets with Multiâ€Role Sodium Dodecyl Sulfate for Highâ€Performance Pseudocapacitors. Small, 2015, 11, 2182-2191.	10.0	212
46	Covalent Patterning and Rapid Visualization of Latent Fingerprints with Photo-Cross-Linkable Semiconductor Polymer Dots. ACS Applied Materials & Semiconductor Polymer Dots. A	8.0	77
47	A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synthetic Metals, 2015, 209, 68-73.	3.9	65
48	Silica-encapsulated semiconductor polymer dots as stable phosphors for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 7281-7285.	5.5	13
49	Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films. Journal of Materials Chemistry A, 2015, 3, 12016-12022.	10.3	39
50	MnO ₂ Nanosheets: Oneâ€Step Synthesis of Singleâ€Layer MnO ₂ Nanosheets with Multiâ€Role Sodium Dodecyl Sulfate for Highâ€Performance Pseudocapacitors (Small 18/2015). Small, 2015, 11, 2220-2220.	10.0	5
51	Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. Advanced Materials, 2015, 27, 5559-5566.	21.0	268
52	One-pot synthesis of ultrathin manganese dioxide nanosheets and their efficient oxidative degradation of Rhodamine B. Applied Surface Science, 2015, 357, 69-73.	6.1	41
53	Controlled synthesis and photocatalytic properties of Ag3PO4 microcrystals. Journal of Alloys and Compounds, 2015, 619, 293-297.	5.5	40

 $R\tilde{A}\frac{1}{4}$ cktitelbild: Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries (Angew.) Tj ETQq0 0 02gBT /Oveolock 10 Tf

4

54

#	Article	IF	CITATIONS
55	Threeâ€Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells. Advanced Materials Interfaces, 2014, 1, 1300043.	3.7	82
56	Bioelectrocatalysis: Graphene Carrier for Magneto-Controllable Bioelectrocatalysis (Small 4/2014). Small, 2014, 10, 646-646.	10.0	0
57	Conjugated Polymer Dots for Ultraâ€Stable Fullâ€Color Fluorescence Patterning. Small, 2014, 10, 4270-4275.	10.0	78
58	Size-Dependent Property and Cell Labeling of Semiconducting Polymer Dots. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 10802-10812.	8.0	74
59	Ambient Fabrication of Largeâ€Area Graphene Films via a Synchronous Reduction and Assembly Strategy. Advanced Materials, 2013, 25, 2957-2962.	21.0	190
60	Porous Graphene: Functional Freeâ€Standing Graphene Honeycomb Films (Adv. Funct. Mater. 23/2013). Advanced Functional Materials, 2013, 23, 2971-2971.	14.9	2
61	Functional Freeâ€Standing Graphene Honeycomb Films. Advanced Functional Materials, 2013, 23, 2972-2978.	14.9	116
62	Assembly of Graphene Sheets into 3D Macroscopic Structures. Small, 2012, 8, 2458-2463.	10.0	158
63	Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. ACS Nano, 2011, 5, 3831-3838.	14 . 6	382
64	Luminescence-enhanced conjugated polymer dots through thermal treatment for cell imaging. Biomaterials Science, 0, , .	5.4	1