Carla Brites

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114209/publications.pdf

Version: 2024-02-01

			361296		345118	
52		1,425	20		36	
papers		citations	h-index		g-index	
	. '			. '		
52		52	52		1679	
all docs		docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment. Food Reviews International, 2023, 39, 160-188.	4.3	18
2	Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds. Foods, 2022, 11, 912.	1.9	4
3	Editorial for the Special Issue, "Quality Assay, Processing and Bio-Function of Rice Products― Foods, 2022, 11, 1755.	1.9	O
4	Disclosing the Nutritional Quality Diversity of Portuguese Common Beansâ€"The Missing Link for Their Effective Use in Protein Quality Breeding Programs. Agronomy, 2021, 11, 221.	1.3	11
5	Occurrence of Fusarium spp. in Maize Grain Harvested in Portugal and Accumulation of Related Mycotoxins during Storage. Foods, 2021, 10, 375.	1.9	17
6	Rice Compounds with Impact on Diabetes Control. Foods, 2021, 10, 1992.	1.9	22
7	Shedding Light on the Volatile Composition of Broa, a Traditional Portuguese Maize Bread. Biomolecules, 2021, 11, 1396.	1.8	2
8	New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment. Proceedings (mdpi), 2021, 70, 25.	0.2	0
9	Evaluation of Starch Hydrolysis for Glycemic Index Prediction of Rice Varieties. Proceedings (mdpi), 2021, 70, 101.	0.2	O
10	Use of Artificial Neural Network Model for Rice Quality Prediction Based on Grain Physical Parameters. Foods, 2021, 10, 3016.	1.9	11
11	Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chemistry, 2020, 306, 125509.	4.2	35
12	Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. European Food Research and Technology, 2020, 246, 527-537.	1.6	55
13	Prediction of Phytochemical Composition, In Vitro Antioxidant Activity and Individual Phenolic Compounds of Common Beans Using MIR and NIR Spectroscopy. Food and Bioprocess Technology, 2020, 13, 962-977.	2.6	23
14	Alleles to Enhance Antioxidant Content in Maizeâ€"A Genome-Wide Association Approach. Journal of Agricultural and Food Chemistry, 2020, 68, 4051-4061.	2.4	7
15	Nutrients, Antinutrients, Phenolic Composition, and Antioxidant Activity of Common Bean Cultivars and their Potential for Food Applications. Antioxidants, 2020, 9, 186.	2.2	41
16	Mycotoxin Incidence in Pre-Harvest Maize Grains. , 2020, 70, .		3
17	Validation of a Biochip Chemiluminescent Immunoassay for Multi-Mycotoxins Screening in Maize (Zea) Tj ETQq1	1 0.7843 1.3	14 rgBT /Over
18	Consumer-Driven Improvement of Maize Bread Formulations with Legume Fortification. Foods, 2019, 8, 235.	1.9	16

#	Article	IF	Citations
19	Characterization of Soaking Process' Impact in Common Beans Phenolic Composition: Contribute from the Unexplored Portuguese Germplasm. Foods, 2019, 8, 296.	1.9	21
20	UHPLC-ToF-MS method for determination of multi-mycotoxins in maize: Development and validation. Current Research in Food Science, 2019, 1, 1-7.	2.7	24
21	Exploiting the bioactive properties of \hat{I}^3 -oryzanol from bran of different exotic rice varieties. Food and Function, 2019, 10, 2382-2389.	2.1	26
22	Genome-wide association study for kernel composition and flour pasting behavior in wholemeal maize flour. BMC Plant Biology, 2019, 19, 123.	1.6	19
23	Variation in Pea (Pisum sativum L.) Seed Quality Traits Defined by Physicochemical Functional Properties. Foods, 2019, 8, 570.	1.9	15
24	Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp Journal of Food Measurement and Characterization, 2019, 13, 305-311.	1.6	12
25	Longâ \in term onâ \in farm participatory maize breeding by stratified mass selection retains molecular diversity while improving agronomic performance. Evolutionary Applications, 2018, 11, 254-270.	1.5	25
26	Elucidating potential utilization of Portuguese common bean varieties in rice based processed foods. Journal of Food Science and Technology, 2018, 55, 1056-1064.	1.4	5
27	Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chemistry, 2018, 242, 196-204.	4.2	143
28	Relationship between seed traits and pasting and cooking behaviour in a pulse germplasm collection. Crop and Pasture Science, 2018, 69, 892.	0.7	12
29	Technological quality of dough and breads from commercial algarroba–wheat flour blends. Journal of Food Science and Technology, 2017, 54, 2104-2114.	1.4	19
30	Rice quality profiling to classify germplasm in breeding programs. Journal of Cereal Science, 2017, 76, 17-27.	1.8	12
31	Dataset of Near-infrared spectroscopy measurement for amylose determination using PLS algorithms. Data in Brief, 2017, 15, 389-396.	0.5	11
32	Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program. Frontiers in Plant Science, 2017, 8, 2203.	1.7	9
33	Characterisation of nutritional quality traits of a chickpea (Cicer arietinum) germplasm collection exploited in chickpea breeding in Europe. Crop and Pasture Science, 2017, 68, 1031.	0.7	28
34	Maize flour parameters that are related to the consumer perceived quality of †broa†specialty bread. Food Science and Technology, 2016, 36, 259-267.	0.8	23
35	Challenges and opportunities for food processing to promote consumption of pulses. Revista De Ciências Agrárias, 2016, 39, 571-582.	0.2	6
36	Influence of Different Carob Fruit Flours (Ceratonia siliqua L.) on Wheat Dough Performance and Bread Quality. Food and Bioprocess Technology, 2015, 8, 1561-1570.	2.6	33

#	Article	IF	Citations
37	Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding. PLoS ONE, 2014, 9, e85106.	1.1	229
38	Effect of Elevated Carbon Dioxide Concentration on Rice Quality: Nutritive Value, Color, Milling, Cooking, and Eating Qualities. Cereal Chemistry, 2014, 91, 513-521.	1.1	21
39	Rheological properties of rice–locust bean gum gels from different rice varieties. Food Hydrocolloids, 2013, 31, 383-391.	5.6	30
40	The use of modified atmospheres to control Sitophilus zeamais and Sitophilus oryzae on stored rice in Portugal. Journal of Stored Products Research, 2012, 50, 49-56.	1.2	46
41	Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Nutrition Research, 2011, 31, 302-308.	1.3	61
42	Maize-Based Gluten-Free Bread: Influence of Processing Parameters on Sensory and Instrumental Quality. Food and Bioprocess Technology, 2010, 3, 707-715.	2.6	108
43	Effect of wheat puroindoline alleles on functional properties of starch. European Food Research and Technology, 2008, 226, 1205-1212.	1.6	41
44	Rheological and Nuclear Magnetic Resonance (NMR) Study of the Hydration and Heating of Undeveloped Wheat Doughs. Journal of Agricultural and Food Chemistry, 2007, 55, 5636-5644.	2.4	37
45	Potential of Waxy gene microsatellite and single-nucleotide polymorphisms to develop japonica varieties with desired amylose levels in rice (Oryza sativa L.). Journal of Cereal Science, 2007, 46, 178-186.	1.8	15
46	Influence of High Molecular Weight (HMW) and Low Molecular Weight (LMW) Glutenin Subunits Controlled byGlu-1andGlu-3Loci on Durum Wheat Quality. Cereal Chemistry, 2001, 78, 59-63.	1.1	77
47	Inheritance of Gliadin and Glutenin Proteins in Four Durum Wheat Crosses. Cereal Research Communications, 2000, 28, 239-246.	0.8	19
48	Participatory Plant Quality Breeding: An Ancient Art Revisited by Knowledge Sharing. The Portuguese Experience., 0,,.		8
49	Near-Infrared Spectroscopy and Machine Learning: Analysis and Classification Methods of Rice. , 0, , .		2
50	Assessment of Gamma Oryzanol Variability, an Attractive Rice Bran Bioactive Compound. Emirates Journal of Food and Agriculture, 0, , 38.	1.0	5
51	Effects of HMW glutenin subunits on some quality parameter of Portuguese landraces of Triticum aestivum ssp. vulgare. Special Publication - Royal Society of Chemistry, 0, , 55-60.	0.0	2
52	Evaluation of Biobased Solutions for Mycotoxin Mitigation on Stored Maize. , 0, , .		1