Carla Brites

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114209/publications.pdf Version: 2024-02-01

CADIA RDITES

#	Article	IF	CITATIONS
1	Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding. PLoS ONE, 2014, 9, e85106.	1.1	229
2	Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chemistry, 2018, 242, 196-204.	4.2	143
3	Maize-Based Gluten-Free Bread: Influence of Processing Parameters on Sensory and Instrumental Quality. Food and Bioprocess Technology, 2010, 3, 707-715.	2.6	108
4	Influence of High Molecular Weight (HMW) and Low Molecular Weight (LMW) Glutenin Subunits Controlled byGlu-1andGlu-3Loci on Durum Wheat Quality. Cereal Chemistry, 2001, 78, 59-63.	1.1	77
5	Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Nutrition Research, 2011, 31, 302-308.	1.3	61
6	ldentification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. European Food Research and Technology, 2020, 246, 527-537.	1.6	55
7	The use of modified atmospheres to control Sitophilus zeamais and Sitophilus oryzae on stored rice in Portugal. Journal of Stored Products Research, 2012, 50, 49-56.	1.2	46
8	Effect of wheat puroindoline alleles on functional properties of starch. European Food Research and Technology, 2008, 226, 1205-1212.	1.6	41
9	Nutrients, Antinutrients, Phenolic Composition, and Antioxidant Activity of Common Bean Cultivars and their Potential for Food Applications. Antioxidants, 2020, 9, 186.	2.2	41
10	Rheological and Nuclear Magnetic Resonance (NMR) Study of the Hydration and Heating of Undeveloped Wheat Doughs. Journal of Agricultural and Food Chemistry, 2007, 55, 5636-5644.	2.4	37
11	Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chemistry, 2020, 306, 125509.	4.2	35
12	Influence of Different Carob Fruit Flours (Ceratonia siliqua L.) on Wheat Dough Performance and Bread Quality. Food and Bioprocess Technology, 2015, 8, 1561-1570.	2.6	33
13	Rheological properties of rice–locust bean gum gels from different rice varieties. Food Hydrocolloids, 2013, 31, 383-391.	5.6	30
14	Characterisation of nutritional quality traits of a chickpea (Cicer arietinum) germplasm collection exploited in chickpea breeding in Europe. Crop and Pasture Science, 2017, 68, 1031.	0.7	28
15	Exploiting the bioactive properties of \hat{I}^3 -oryzanol from bran of different exotic rice varieties. Food and Function, 2019, 10, 2382-2389.	2.1	26
16	Longâ€ŧerm onâ€farm participatory maize breeding by stratified mass selection retains molecular diversity while improving agronomic performance. Evolutionary Applications, 2018, 11, 254-270.	1.5	25
17	UHPLC-ToF-MS method for determination of multi-mycotoxins in maize: Development and validation. Current Research in Food Science, 2019, 1, 1-7.	2.7	24
18	Maize flour parameters that are related to the consumer perceived quality of †broa' specialty bread. Food Science and Technology, 2016, 36, 259-267.	0.8	23

CARLA BRITES

#	Article	IF	CITATIONS
19	Prediction of Phytochemical Composition, In Vitro Antioxidant Activity and Individual Phenolic Compounds of Common Beans Using MIR and NIR Spectroscopy. Food and Bioprocess Technology, 2020, 13, 962-977.	2.6	23
20	Rice Compounds with Impact on Diabetes Control. Foods, 2021, 10, 1992.	1.9	22
21	Effect of Elevated Carbon Dioxide Concentration on Rice Quality: Nutritive Value, Color, Milling, Cooking, and Eating Qualities. Cereal Chemistry, 2014, 91, 513-521.	1.1	21
22	Characterization of Soaking Process' Impact in Common Beans Phenolic Composition: Contribute from the Unexplored Portuguese Germplasm. Foods, 2019, 8, 296.	1.9	21
23	Technological quality of dough and breads from commercial algarroba–wheat flour blends. Journal of Food Science and Technology, 2017, 54, 2104-2114.	1.4	19
24	Genome-wide association study for kernel composition and flour pasting behavior in wholemeal maize flour. BMC Plant Biology, 2019, 19, 123.	1.6	19
25	Inheritance of Cliadin and Clutenin Proteins in Four Durum Wheat Crosses. Cereal Research Communications, 2000, 28, 239-246.	0.8	19
26	Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment. Food Reviews International, 2023, 39, 160-188.	4.3	18
27	Occurrence of Fusarium spp. in Maize Grain Harvested in Portugal and Accumulation of Related Mycotoxins during Storage. Foods, 2021, 10, 375.	1.9	17
28	Consumer-Driven Improvement of Maize Bread Formulations with Legume Fortification. Foods, 2019, 8, 235.	1.9	16
29	Potential of Waxy gene microsatellite and single-nucleotide polymorphisms to develop japonica varieties with desired amylose levels in rice (Oryza sativa L.). Journal of Cereal Science, 2007, 46, 178-186.	1.8	15
30	Validation of a Biochip Chemiluminescent Immunoassay for Multi-Mycotoxins Screening in Maize (Zea) Tj ETQc	10 0 0 rgBT	/Overlock 10
31	Variation in Pea (Pisum sativum L.) Seed Quality Traits Defined by Physicochemical Functional Properties. Foods, 2019, 8, 570.	1.9	15
32	Rice quality profiling to classify germplasm in breeding programs. Journal of Cereal Science, 2017, 76, 17-27.	1.8	12
33	Relationship between seed traits and pasting and cooking behaviour in a pulse germplasm collection. Crop and Pasture Science, 2018, 69, 892.	0.7	12
34	Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp Journal of Food Measurement and Characterization, 2019, 13, 305-311.	1.6	12
35	Dataset of Near-infrared spectroscopy measurement for amylose determination using PLS algorithms. Data in Brief, 2017, 15, 389-396.	0.5	11
36	Disclosing the Nutritional Quality Diversity of Portuguese Common Beans—The Missing Link for Their Effective Use in Protein Quality Breeding Programs. Agronomy, 2021, 11, 221.	1.3	11

CARLA BRITES

#	Article	IF	CITATIONS
37	Use of Artificial Neural Network Model for Rice Quality Prediction Based on Grain Physical Parameters. Foods, 2021, 10, 3016.	1.9	11
38	Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program. Frontiers in Plant Science, 2017, 8, 2203.	1.7	9
39	Participatory Plant Quality Breeding: An Ancient Art Revisited by Knowledge Sharing. The Portuguese Experience. , 0, , .		8
40	Alleles to Enhance Antioxidant Content in Maize—A Genome-Wide Association Approach. Journal of Agricultural and Food Chemistry, 2020, 68, 4051-4061.	2.4	7
41	Challenges and opportunities for food processing to promote consumption of pulses. Revista De Ciências Agrárias, 2016, 39, 571-582.	0.2	6
42	Elucidating potential utilization of Portuguese common bean varieties in rice based processed foods. Journal of Food Science and Technology, 2018, 55, 1056-1064.	1.4	5
43	Assessment of Gamma Oryzanol Variability, an Attractive Rice Bran Bioactive Compound. Emirates Journal of Food and Agriculture, 0, , 38.	1.0	5
44	Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds. Foods, 2022, 11, 912.	1.9	4
45	Mycotoxin Incidence in Pre-Harvest Maize Grains. , 2020, 70, .		3
46	Near-Infrared Spectroscopy and Machine Learning: Analysis and Classification Methods of Rice. , 0, , .		2
47	Shedding Light on the Volatile Composition of Broa, a Traditional Portuguese Maize Bread. Biomolecules, 2021, 11, 1396.	1.8	2
48	Effects of HMW glutenin subunits on some quality parameter of Portuguese landraces of Triticum aestivum ssp. vulgare. Special Publication - Royal Society of Chemistry, 0, , 55-60.	0.0	2
49	Evaluation of Biobased Solutions for Mycotoxin Mitigation on Stored Maize. , 0, , .		1
50	New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment. Proceedings (mdpi), 2021, 70, 25.	0.2	0
51	Evaluation of Starch Hydrolysis for Glycemic Index Prediction of Rice Varieties. Proceedings (mdpi), 2021, 70, 101.	0.2	0
52	Editorial for the Special Issue, "Quality Assay, Processing and Bio-Function of Rice Products― Foods, 2022, 11, 1755.	1.9	0