

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114019/publications.pdf Version: 2024-02-01

|          |                | 218381       | 155451         |
|----------|----------------|--------------|----------------|
| 148      | 3,368          | 26           | 55             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
| 153      | 153            | 153          | 2967           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Interatomic potential for silicon defects and disordered phases. Physical Review B, 1998, 58, 2539-2550.                                                                                          | 1.1 | 406       |
| 2  | Environment-dependent interatomic potential for bulk silicon. Physical Review B, 1997, 56, 8542-8552.                                                                                             | 1.1 | 364       |
| 3  | Group IV Graphene- and Graphane-Like Nanosheets. Journal of Physical Chemistry C, 2011, 115, 13242-13246.                                                                                         | 1.5 | 288       |
| 4  | Anomalous compressibility of ferropericlase throughout the iron spin cross-over. Proceedings of the United States of America, 2009, 106, 8447-8452.                                               | 3.3 | 165       |
| 5  | A Palm Tree Antipodal Vivaldi Antenna With Exponential Slot Edge for Improved Radiation Pattern. IEEE<br>Antennas and Wireless Propagation Letters, 2015, 14, 1334-1337.                          | 2.4 | 142       |
| 6  | Structural properties of amorphous silicon nitride. Physical Review B, 1998, 58, 8323-8328.                                                                                                       | 1.1 | 140       |
| 7  | Elastic Anomalies in a Spin-Crossover System: Ferropericlase at Lower Mantle Conditions. Physical<br>Review Letters, 2013, 110, 228501.                                                           | 2.9 | 101       |
| 8  | Hydrogen role on the properties of amorphous silicon nitride. Journal of Applied Physics, 1999, 86, 1843-1847.                                                                                    | 1.1 | 88        |
| 9  | Intrinsic Mobility of a Dissociated Dislocation in Silicon. Physical Review Letters, 2000, 84, 3346-3349.                                                                                         | 2.9 | 72        |
| 10 | Parameter-free modelling of dislocation motion: The case of silicon. Philosophical Magazine A:<br>Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1257-1281. | 0.8 | 69        |
| 11 | Anomalous thermodynamic properties in ferropericlase throughout its spin crossover. Physical<br>Review B, 2009, 80, .                                                                             | 1.1 | 68        |
| 12 | The importance of Grüneisen parameters in developing interatomic potentials. Journal of Applied Physics, 1997, 82, 5378-5381.                                                                     | 1.1 | 60        |
| 13 | Kink Asymmetry and Multiplicity in Dislocation Cores. Physical Review Letters, 1997, 79, 5042-5045.                                                                                               | 2.9 | 53        |
| 14 | Structural and electronic properties of3dtransition metal impurities in silicon carbide. Physical<br>Review B, 2004, 69, .                                                                        | 1.1 | 52        |
| 15 | Vacancy Interaction with Dislocations in Silicon: The Shuffle-Glide Competition. Physical Review Letters, 2000, 84, 2172-2175.                                                                    | 2.9 | 49        |
| 16 | First-principles investigation ofaâ^'SiNx:H. Physical Review B, 2002, 65, .                                                                                                                       | 1.1 | 45        |
| 17 | Functionalized adamantane: Building blocks for nanostructure self-assembly. Physical Review B, 2009,<br>80, .                                                                                     | 1.1 | 43        |
| 18 | Stability and plasticity of silicon nanowires: The role of wire perimeter. Physical Review B, 2007, 75, .                                                                                         | 1.1 | 40        |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dislocation core reconstruction and its effect on dislocation mobility in silicon. Journal of Applied Physics, 1999, 86, 4249-4257.                            | 1.1 | 37        |
| 20 | Electronic properties and hyperfine fields of nickel-related complexes in diamond. Physical Review B, 2009, 79, .                                              | 1.1 | 35        |
| 21 | Point defect interactions with extended defects in semiconductors. Physical Review B, 1999, 60, 4711-4714.                                                     | 1.1 | 32        |
| 22 | Analytical and Experimental Performance Evaluations of CAN-FD Bus. IEEE Access, 2018, 6, 21287-21295.                                                          | 2.6 | 31        |
| 23 | A Fern Antipodal Vivaldi Antenna for Near-Field Microwave Imaging Medical Applications. IEEE<br>Transactions on Antennas and Propagation, 2021, 69, 8816-8829. | 3.1 | 30        |
| 24 | Isolated nickel impurities in diamond: A microscopic model for the electrically active centers. Applied Physics Letters, 2004, 84, 720-722.                    | 1.5 | 28        |
| 25 | Iron–acceptor pairs in silicon:â€,Structure and formation processes. Journal of Applied Physics, 2001, 90, 2744-2754.                                          | 1.1 | 27        |
| 26 | Imaging dislocation cores – the way forward. Philosophical Magazine, 2006, 86, 4781-4796.                                                                      | 0.7 | 27        |
| 27 | Real-Time Adaptive Object Detection and Tracking for Autonomous Vehicles. IEEE Transactions on<br>Intelligent Vehicles, 2021, 6, 450-459.                      | 9.4 | 26        |
| 28 | Identification of combustion and detonation in spark ignition engines using ion current signal. Fuel, 2018, 227, 469-477.                                      | 3.4 | 25        |
| 29 | Finite-temperature molecular-dynamics study of unstable stacking fault free energies in silicon.<br>Physical Review B, 1998, 58, 12555-12558.                  | 1.1 | 23        |
| 30 | Dislocation core properties in semiconductors. Solid State Communications, 2001, 118, 651-655.                                                                 | 0.9 | 23        |
| 31 | Structural and electronic properties of silicon nitride materials. International Journal of Quantum<br>Chemistry, 1998, 70, 973-980.                           | 1.0 | 22        |
| 32 | Role of intrinsic defects in the electronic and optical properties of α-HgI2. Applied Physics Letters, 2006, 88, 011918.                                       | 1.5 | 22        |
| 33 | Quasiharmonic elastic constants corrected for deviatoric thermal stresses. Physical Review B, 2008, 78, .                                                      | 1.1 | 22        |
| 34 | Structural, Electronic, and Vibrational Properties of Amino-adamantane and Rimantadine Isomers.<br>Journal of Physical Chemistry A, 2010, 114, 11977-11983.    | 1.1 | 22        |
| 35 | Stability of calcium and magnesium carbonates at Earth's lower mantle thermodynamic conditions.<br>Earth and Planetary Science Letters, 2019, 506, 1-7.        | 1.8 | 21        |
| 36 | Structural order and clustering in annealedî±â~'SiCandî±â~'SiC:H. Physical Review B, 2002, 65, .                                                               | 1.1 | 20        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A high directive <scp>K</scp> och fractal <scp>V</scp> ivaldi antenna design for medical nearâ€field<br>microwave imaging applications. Microwave and Optical Technology Letters, 2017, 59, 337-346.                                     | 0.9 | 20        |
| 38 | Effects of extended defects on the properties of intrinsic and extrinsic point defects in silicon.<br>Physica B: Condensed Matter, 1999, 273-274, 473-475.                                                                               | 1.3 | 19        |
| 39 | Educational Test Bed 4.0: a teaching tool for Industry 4.0. European Journal of Engineering Education, 2020, 45, 1002-1023.                                                                                                              | 1.5 | 19        |
| 40 | Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. International<br>Journal of Nanomedicine, 2021, Volume 16, 5411-5435.                                                                                   | 3.3 | 19        |
| 41 | Crystalline silicon oxycarbide: Is there a native oxide for silicon carbide?. Applied Physics Letters, 2004, 84, 4845-4847.                                                                                                              | 1.5 | 18        |
| 42 | Manganese impurities in boron nitride. Applied Physics Letters, 2006, 89, 072102.                                                                                                                                                        | 1.5 | 18        |
| 43 | Carbonates at high pressures: Possible carriers for deep carbon reservoirs in the Earth's lower mantle. Physical Review B, 2016, 94, .                                                                                                   | 1.1 | 18        |
| 44 | Dislocation core reconstruction in zinc-blende semiconductors. Journal of Physics Condensed<br>Matter, 2000, 12, 10039-10044.                                                                                                            | 0.7 | 16        |
| 45 | 3 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>d</mml:mi></mml:math> transition metal impurities in diamond: Electronic<br>properties and chemical trends. Physical Review B, 2011, 84, . | 1.1 | 16        |
| 46 | Kinetic Monte Carlo approach to modeling dislocation mobility. Computational Materials Science, 2002, 23, 124-130.                                                                                                                       | 1.4 | 15        |
| 47 | Lanthanide impurities in wide bandgap semiconductors: A possible roadmap for spintronic devices.<br>Applied Physics Letters, 2013, 102, .                                                                                                | 1.5 | 15        |
| 48 | Core effects in dislocation intersection. Scripta Materialia, 1997, 36, 707-712.                                                                                                                                                         | 2.6 | 14        |
| 49 | Electronic properties and hyperfine parameters of gold–3d-transition-metal impurity pairs in silicon.<br>Physical Review B, 1998, 58, 3870-3878.                                                                                         | 1.1 | 14        |
| 50 | Transition metal atoms encapsulated in adamantane molecules. Diamond and Related Materials, 2011, 20, 1222-1224.                                                                                                                         | 1.8 | 14        |
| 51 | Rotary Inverted Pendulum Identification for Control by Paraconsistent Neural Network. IEEE Access, 2021, 9, 74155-74167.                                                                                                                 | 2.6 | 14        |
| 52 | Interaction of As impurities with 30° partial dislocations in Si: An ab initio investigation. Journal of<br>Applied Physics, 2002, 91, 5892-5895.                                                                                        | 1.1 | 13        |
| 53 | Palm tree coplanar Vivaldi antenna for near field radar application. Microwave and Optical<br>Technology Letters, 2020, 62, 964-974.                                                                                                     | 0.9 | 13        |
| 54 | Electronic charge effects on dislocation cores in silicon. Applied Physics Letters, 2004, 85, 5610-5612.                                                                                                                                 | 1.5 | 12        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Viscosity undulations in the lower mantle: The dynamical role of iron spin transition. Earth and<br>Planetary Science Letters, 2015, 421, 20-26.                                                                   | 1.8 | 12        |
| 56 | Two-phase flow bubble detection method applied to natural circulation system using fuzzy image processing. Nuclear Engineering and Design, 2018, 335, 255-264.                                                     | 0.8 | 12        |
| 57 | Defects in mercuric iodide: an APW investigation. Physica B: Condensed Matter, 2003, 340-342, 918-922.                                                                                                             | 1.3 | 11        |
| 58 | A first principles investigation on hypothetical crystalline phases of silicon oxycarbide. Diamond and Related Materials, 2005, 14, 1142-1145.                                                                     | 1.8 | 11        |
| 59 | Stacking fault effects in pure and n-type doped GaAs. Applied Physics Letters, 2001, 78, 907-909.                                                                                                                  | 1.5 | 10        |
| 60 | Point defect interaction with dislocations in silicon. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2001, 309-310, 129-132.                              | 2.6 | 9         |
| 61 | An ab initio investigation on nickel impurities in diamond. Physica B: Condensed Matter, 2003, 340-342, 84-88.                                                                                                     | 1.3 | 9         |
| 62 | Designing digital filter banks using wavelets. Eurasip Journal on Advances in Signal Processing, 2019,<br>2019, .                                                                                                  | 1.0 | 9         |
| 63 | The Structural and Electronic Properties of Tin Oxide Nanowires: An Ab Initio Investigation. Journal of Physical Chemistry C, 2012, 116, 13382-13387.                                                              | 1.5 | 8         |
| 64 | Generalized Adaptive Polynomial Window Function. IEEE Access, 2020, 8, 187584-187589.                                                                                                                              | 2.6 | 8         |
| 65 | ELECTRONIC PROPERTIES OF COPPER-3d TRANSITION-METAL PAIRS IN SILICON. International Journal of Modern Physics B, 1999, 13, 2387-2396.                                                                              | 1.0 | 7         |
| 66 | Cobalt in diamond: An ab initio investigation. Diamond and Related Materials, 2007, 16, 819-822.                                                                                                                   | 1.8 | 7         |
| 67 | Boron and nitrogen functionalized diamondoids: A first principles investigation. Diamond and Related<br>Materials, 2010, 19, 837-840.                                                                              | 1.8 | 7         |
| 68 | Spin states of iron impurities in magnesium oxide under pressure: A possible intermediate state.<br>Physical Review B, 2013, 87, .                                                                                 | 1.1 | 7         |
| 69 | Model-Based Development of an Engine Control Module for a Spark Ignition Engine. IEEE Access, 2018,<br>6, 53638-53649.                                                                                             | 2.6 | 7         |
| 70 | Ultraâ€directive palm tree Vivaldi antenna with 3D substrate lens for μâ€biological nearâ€field microwave<br>reduction applications. Microwave and Optical Technology Letters, 2019, 61, 713-719.                  | 0.9 | 7         |
| 71 | Calcium carbonate at high pressures and high temperatures: A first-principles investigation. Physics of the Earth and Planetary Interiors, 2020, 299, 106327.                                                      | 0.7 | 7         |
| 72 | Event-Triggered Non-Switching Networked Sliding Mode Control for Active Suspension System With<br>Random Actuation Network Delay. IEEE Transactions on Intelligent Transportation Systems, 2022, 23,<br>7521-7534. | 4.7 | 7         |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Functionalized few-layer silicene nanosheets: stability, elastic, structural, and electronic properties.<br>Physical Chemistry Chemical Physics, 2022, 24, 8705-8715.                  | 1.3 | 7         |
| 74 | Interatomic Potential for Condensed Phases and Bulk Defects in Silicon. Materials Research Society<br>Symposia Proceedings, 1997, 469, 217.                                            | 0.1 | 6         |
| 75 | The Environment-Dependent Interatomic Potential Applied To Silicon Disordered Structures And Phase<br>Transitions. Materials Research Society Symposia Proceedings, 1997, 491, 339.    | 0.1 | 6         |
| 76 | Microscopic structure of the 90°and 30°partial dislocations in gallium arsenide. Journal of Physics<br>Condensed Matter, 2002, 14, 12749-12754.                                        | 0.7 | 6         |
| 77 | Arsenic segregation, pairing and mobility on the cores of partial dislocations in silicon. Journal of Physics Condensed Matter, 2002, 14, 12761-12765.                                 | 0.7 | 6         |
| 78 | Transition metal impurities in 3C-SiC and 2H-SiC. Physica B: Condensed Matter, 2003, 340-342, 116-120.                                                                                 | 1.3 | 6         |
| 79 | Spin transition-induced anomalies in the lower mantle: implications for mid-mantle partial layering.<br>Geophysical Journal International, 2017, 210, 765-773.                         | 1.0 | 6         |
| 80 | Dynamics of Dissociated Dislocations in SI: A Micro-Meso Simulation Methodology. Materials<br>Research Society Symposia Proceedings, 1998, 538, 69.                                    | 0.1 | 5         |
| 81 | Energetics of silicon nanowires: a molecular dynamics investigation. Physica Status Solidi (A)<br>Applications and Materials Science, 2007, 204, 951-955.                              | 0.8 | 5         |
| 82 | Cobalt-related impurity centers in diamond: electronic properties and hyperfine parameters. Journal of Physics Condensed Matter, 2008, 20, 415220.                                     | 0.7 | 5         |
| 83 | Trends on 3d transition metal impurities in diamond. Physica B: Condensed Matter, 2009, 404, 4515-4517.                                                                                | 1.3 | 5         |
| 84 | Rare-earth impurities in gallium nitride: The role of the Hubbard potential. Diamond and Related<br>Materials, 2012, 27-28, 64-67.                                                     | 1.8 | 5         |
| 85 | Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice. Europhysics<br>Letters, 2014, 108, 36006.                                                        | 0.7 | 5         |
| 86 | Carbon-Related Bilayers: Nanoscale Building Blocks for Self-Assembly Nanomanufacturing. Journal of<br>Physical Chemistry C, 2019, 123, 23195-23204.                                    | 1.5 | 5         |
| 87 | Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover<br>Immunotherapeutic Possibilities. International Journal of Nanomedicine, 2022, Volume 17, 751-781. | 3.3 | 5         |
| 88 | The effect of a stacking fault on the electronic properties of dopants in gallium arsenide. Journal of Physics Condensed Matter, 2000, 12, 10235-10239.                                | 0.7 | 4         |
| 89 | Segregation of dopant atoms on extended defects in semiconductors. Physica B: Condensed Matter, 2001, 302-303, 403-407.                                                                | 1.3 | 4         |
| 90 | Electrically active centers in partial dislocations in semiconductors. Physica B: Condensed Matter, 2001, 308-310, 489-492.                                                            | 1.3 | 4         |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Reconstruction defects on partial dislocations in semiconductors. Applied Physics Letters, 2001, 79, 3630-3632.                                                               | 1.5 | 4         |
| 92  | Modelling Amorphous Materials: Silicon Nitride and Silicon Carbide. Defect and Diffusion Forum, 2002, 206-207, 19-30.                                                         | 0.4 | 4         |
| 93  | Titanium impurities in silicon, diamond, and silicon carbide. Brazilian Journal of Physics, 2004, 34, 602-604.                                                                | 0.7 | 4         |
| 94  | Structural and electronic properties of Ti impurities in SiC: an ab initio investigation. Computational Materials Science, 2004, 30, 57-61.                                   | 1.4 | 4         |
| 95  | Nickel impurities in diamond: a FP-LAPW investigation. Computational Materials Science, 2004, 30, 62-66.                                                                      | 1.4 | 4         |
| 96  | Ab initio investigations on the dislocation core properties in zinc-blende semiconductors.<br>Computational Materials Science, 2004, 30, 67-72.                               | 1.4 | 4         |
| 97  | On the reversibility of hydrogen effects on the properties of amorphous silicon carbide. Journal of Non-Crystalline Solids, 2004, 338-340, 299-302.                           | 1.5 | 4         |
| 98  | Band gap states of interstitial nickel-complexes in diamond. Physica B: Condensed Matter, 2006, 376-377, 292-295.                                                             | 1.3 | 4         |
| 99  | Behavior of 3d-transition metals in different SiC polytypes. Physica B: Condensed Matter, 2006, 376-377, 378-381.                                                             | 1.3 | 4         |
| 100 | Electronic and magnetic properties of Mn and Fe impurities in III-nitride semiconductors. Diamond and Related Materials, 2007, 16, 1429-1432.                                 | 1.8 | 4         |
| 101 | Characterization of amorphous carbon films by PECVD and plasma ion implantation: The role of fluorine and sulfur doping. Materials Chemistry and Physics, 2019, 227, 170-175. | 2.0 | 4         |
| 102 | Defect centers in a-SiNx: electronic and structural properties. Brazilian Journal of Physics, 2002, 32, 436-438.                                                              | 0.7 | 4         |
| 103 | The energetics of dislocation cores in semiconductors and their role on dislocation mobility. Physica<br>B: Condensed Matter, 2001, 302-303, 398-402.                         | 1.3 | 3         |
| 104 | Electronic structure of light emitting centers in Er doped Si. Applied Physics A: Materials Science and Processing, 2003, 76, 991-997.                                        | 1.1 | 3         |
| 105 | A theoretical model for the nickel-related defect centers in diamond. Diamond and Related Materials, 2005, 14, 380-382.                                                       | 1.8 | 3         |
| 106 | 3d-Transition Metals in Cubic and Hexagonal Silicon Carbide. Materials Science Forum, 2005, 483-485, 531-534.                                                                 | 0.3 | 3         |
| 107 | Publisher's Note: Anomalous thermodynamic properties in ferropericlase throughout its spin<br>crossover [Phys. Rev. B80, 014409 (2009)]. Physical Review B, 2009, 80, .       | 1.1 | 3         |
| 108 | A complete CMOS UWB Timed-Array Transmitter with a 3D vivaldi antenna array for electronic high-resolution beam spatial scanning. , 2013, , .                                 |     | 3         |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A first principles investigation of mercuric iodide: bulk properties and intrinsic defects. Brazilian<br>Journal of Physics, 2004, 34, 681-683.                     | 0.7 | 3         |
| 110 | A Vivaldi Antenna Palm Tree Class with Koch Square Fractal Slot Edge for Near-Field Microwave<br>Biomedical Imaging Applications. , 2020, , .                       |     | 3         |
| 111 | Atomistic Mechanisms of Dislocation Mobility in Silicon. Materials Research Society Symposia<br>Proceedings, 1997, 469, 505.                                        | 0.1 | 2         |
| 112 | Atomistic modeling of crystal-defect mobility and interactions. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 251-256.                            | 0.6 | 2         |
| 113 | Hydrogenated Amorphous Silicon Nitride: Structural and Electronic Properties. Materials Research<br>Society Symposia Proceedings, 1998, 538, 555.                   | 0.1 | 2         |
| 114 | Use of Composite Materials to Renovate a Steel Water Pipe. Materials Science Forum, 2004, 455-456,<br>853-856.                                                      | 0.3 | 2         |
| 115 | Nickel-Vacancy Complexes in Diamond: An Ab-Initio Investigation. Materials Science Forum, 2005, 483-485, 1043-1046.                                                 | 0.3 | 2         |
| 116 | Interaction of dislocations with vacancies in silicon: Electronic effects. Applied Physics Letters, 2007, 90, 222106.                                               | 1.5 | 2         |
| 117 | Crystal engineering using functionalized adamantane. Journal of Physics Condensed Matter, 2010, 22, 315303.                                                         | 0.7 | 2         |
| 118 | A didactic platform to study of CAN FD bus. , 2013, , .                                                                                                             |     | 2         |
| 119 | Iron and manganese-related magnetic centers in hexagonal silicon carbide: A possible roadmap for spintronic devices. Journal of Applied Physics, 2015, 118, 045704. | 1.1 | 2         |
| 120 | Design of a Microstrip Line Quad-band Bandpass Filter based on the Fibonacci geometric sequence. ,<br>2020, , .                                                     |     | 2         |
| 121 | Real-Time Knock Characterization Using Adaptive Filters and Power Estimators. IEEE Access, 2020, 8, 84371-84384.                                                    | 2.6 | 2         |
| 122 | An efficient formulation for optimization of FlexRay frame scheduling. Vehicular Communications, 2020, 24, 100234.                                                  | 2.7 | 2         |
| 123 | Paraconsistent logic approach for active noise reduction. Journal of Mechatronics Engineering, 2020, 3, 2-8.                                                        | 0.1 | 2         |
| 124 | Dopant interaction with a dislocation in silicon: local and non-local effects. Physica B: Condensed<br>Matter, 2001, 308-310, 470-473.                              | 1.3 | 1         |
| 125 | Manganese Impurity in Boron Nitride and Gallium Nitride. Materials Science Forum, 2005, 483-485, 1047-1050.                                                         | 0.3 | 1         |
| 126 | Microscopic structure of nickel-dopant centers in diamond. Brazilian Journal of Physics, 2006, 36, 267-269.                                                         | 0.7 | 1         |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Iron in magnesium oxide at high pressures: a first principles theoretical investigation. Physica Status<br>Solidi (B): Basic Research, 2013, 250, 750-754.                                                  | 0.7 | 1         |
| 128 | Low-cost didactic platform for real-time adaptive filtering: Application on noise cancellation.<br>International Journal of Electrical Engineering and Education, 2022, 59, 141-157.                        | 0.4 | 1         |
| 129 | Digital Image Inpainting by Estimating Wavelet Coefficient Decays From Regularity Property and Besov<br>Spaces. IEEE Access, 2019, 7, 3459-3471.                                                            | 2.6 | 1         |
| 130 | Simulation Performance Enhancement in Automotive Embedded Control Using the Unscented Transform. IEEE Access, 2020, 8, 222041-222049.                                                                       | 2.6 | 1         |
| 131 | Modeling Covalent Bond with Interatomic Potentials. , 2005, , 499-507.                                                                                                                                      |     | 1         |
| 132 | Electronic properties of isolated nickel in diamond. Brazilian Journal of Physics, 2004, 34, 669-671.                                                                                                       | 0.7 | 1         |
| 133 | Active Vivaldi Antenna Timed-Array for Ultra-Wideband 3D Beamforming. Recent Patents on Engineering, 2016, 10, 121-127.                                                                                     | 0.3 | 1         |
| 134 | Structure and bonding of iron-acceptor pairs in silicon. Brazilian Journal of Physics, 2002, 32, 418-420.                                                                                                   | 0.7 | 1         |
| 135 | ROADLANE—The Modular Framework to Support Recognition Algorithms of Road Lane Markings.<br>Applied Sciences (Switzerland), 2021, 11, 10783.                                                                 | 1.3 | 1         |
| 136 | Chemical Trends in Electronic Properties of Gold-3D Transition Metal Impurity Pairs in Silicon.<br>Materials Research Society Symposia Proceedings, 1997, 469, 511.                                         | 0.1 | 0         |
| 137 | Point Defect Interactions with Extended Defects in Silicon. Materials Research Society Symposia<br>Proceedings, 1998, 538, 419.                                                                             | 0.1 | 0         |
| 138 | Unstable Stacking Fault Free Energies in Silicon through Empirical Modeling. Materials Research<br>Society Symposia Proceedings, 1998, 539, 175.                                                            | 0.1 | 0         |
| 139 | Dislocations in Semiconductors: Core Structure and Mobility. Defect and Diffusion Forum, 2002, 200-202, 97-106.                                                                                             | 0.4 | 0         |
| 140 | Structural and Electronic Properties of Si <sub>1-x</sub> C <sub>x</sub> O <sub>2</sub> . Materials<br>Science Forum, 2005, 483-485, 577-580.                                                               | 0.3 | 0         |
| 141 | A Feedback System Dynamic Response Analysis by Root-Locus Method Using Excel Spreadsheet and<br>XNumbers Add-In Package. International Journal of Electrical Engineering and Education, 2013, 50,<br>69-79. | 0.4 | 0         |
| 142 | A CMOS UWB transmitter with Vivaldi Array for Ultra-fast Beam steering microwave radar. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 427-439.                         | 0.4 | 0         |
| 143 | Teaching microcontrollers using automotive electronic systems. International Journal of Electrical Engineering and Education, 2016, 53, 23-36.                                                              | 0.4 | 0         |
| 144 | Why Aren't Embedded Fuel-Quality Sensors in Our Cars?. IEEE Potentials, 2020, 39, 43-47.                                                                                                                    | 0.2 | 0         |

| #   | Article                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Silicon Nanowires: From Empirical to First Principles Modeling. Challenges and Advances in Computational Chemistry and Physics, 2010, , 173-191. | 0.6 | 0         |
| 146 | Comparison Study of Hilbert Sierpinski and Koch Fractal Structure on Coplanar Vivaldi Antenna for<br>L/S band Application. , 2020, , .           |     | 0         |
| 147 | An Antipodal Vivaldi Antenna Using Radiant Side Slot Edge Based on the Star Trek Dominion Insignia. , 2021, , .                                  |     | 0         |
| 148 | Modeling Covalent Bond with Interatomic Potentials. , 2005, , 499-507.                                                                           |     | 0         |