
Johnny Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/811380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens. Biomedical Microdevices, 2021, 23, 25.	2.8	8
2	Evaluation of tissue integration of injectable, cellâ€laden hydrogels of cocultures of mesenchymal stem cells and articular chondrocytes with an ex vivo cartilage explant model. Biotechnology and Bioengineering, 2021, 118, 2958-2966.	3.3	10
3	Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Acta Biomaterialia, 2021, 128, 120-129.	8.3	21
4	Functional heterogeneity of IFN-γ–licensed mesenchymal stromal cell immunosuppressive capacity on biomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
5	Science-based regulatory considerations for regenerative medicine cellular products. Current Opinion in Biomedical Engineering, 2021, 21, 100361.	3.4	1
6	Chondrogenesis of cocultures of mesenchymal stem cells and articular chondrocytes in poly(I-lysine)-loaded hydrogels. Journal of Controlled Release, 2020, 328, 710-721.	9.9	12
7	Improvement of 19F MR image uniformity in a mouse model of cellular therapy using inductive coupling. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 15-23.	2.0	5
8	Synthesis of Injectable, Thermally Responsive, Chondroitin Sulfate-Cross-Linked Poly(N-isopropylacrylamide) Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 6405-6413.	5.2	12
9	Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering. Science Advances, 2019, 5, eaaw7396.	10.3	80
10	Functionally-Relevant Morphological Profiling: A Tool to Assess Cellular Heterogeneity. Trends in Biotechnology, 2018, 36, 105-118.	9.3	49
11	Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics, 2018, 8, 3317-3330.	10.0	86
12	Functional Profiling of Chondrogenically Induced Multipotent Stromal Cell Aggregates Reveals Transcriptomic and Emergent Morphological Phenotypes Predictive of Differentiation Capacity. Stem Cells Translational Medicine, 2018, 7, 664-675.	3.3	23
13	Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025734.	6.2	7
14	Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates. SLAS Technology, 2017, 22, 646-661.	1.9	10
15	Polymer-Based Local Antibiotic Delivery for Prevention of Polymicrobial Infection in Contaminated Mandibular Implants. ACS Biomaterials Science and Engineering, 2016, 2, 558-566.	5.2	17
16	Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissue engineering. Biomaterials, 2016, 83, 332-346.	11.4	78
17	Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering. Data in Brief, 2016, 7, 614-619.	1.0	5
18	Evaluation of Gelatin Microparticles as Adherent-Substrates for Mesenchymal Stem Cells in a Hydrogel Composite. Annals of Biomedical Engineering, 2016, 44, 1894-1907.	2.5	19

JOHNNY LAM

#	Article	IF	CITATIONS
19	A rapid, flexible method for incorporating controlled antibiotic release into porous polymethylmethacrylate space maintainers for craniofacial reconstruction. Biomaterials Science, 2016, 4, 121-129.	5.4	8
20	Fabrication of Cell-Laden Macroporous Biodegradable Hydrogels with Tunable Porosities and Pore Sizes. Tissue Engineering - Part C: Methods, 2015, 21, 263-273.	2.1	20
21	Autologously Generated Tissue-Engineered Bone Flaps for Reconstruction of Large Mandibular Defects in an Ovine Model. Tissue Engineering - Part A, 2015, 21, 1520-1528.	3.1	33
22	Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites. Tissue Engineering - Part C: Methods, 2015, 21, 1216-1225.	2.1	13
23	Strategies for controlled delivery of biologics for cartilage repair. Advanced Drug Delivery Reviews, 2015, 84, 123-134.	13.7	91
24	A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, 3477-3487.	4.0	29
25	Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthritis and Cartilage, 2014, 22, 1291-1300.	1.3	45
26	Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials, 2014, 35, 7460-7469.	11.4	127
27	Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model. Acta Biomaterialia, 2014, 10, 4574-4582.	8.3	19
28	Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials, 2014, 35, 8829-8839.	11.4	136
29	Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels. Acta Biomaterialia, 2014, 10, 1112-1123.	8.3	54
30	Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomaterialia, 2014, 10, 4103-4112.	8.3	49
31	Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. Journal of Controlled Release, 2013, 168, 166-178.	9.9	122
32	Vinculin Activation Is Necessary for Complete Talin Binding. Biophysical Journal, 2011, 100, 332-340.	0.5	45
33	Bilayered, Peptide Biofunctionalized Hydrogels for in Vivo Osteochondral Tissue Repair. SSRN Electronic Journal, 0, , .	0.4	0