Ted Ross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8113517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of age and pre-existing influenza immune responses in humans receiving split inactivated influenza vaccine on the induction of the breadth of antibodies to influenza A strains. PLoS ONE, 2017, 12, e0185666.	1.1	60
2	Glycomic analysis of host response reveals high mannose as a key mediator of influenza severity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26926-26935.	3.3	39
3	Universal Influenza Virus Neuraminidase Vaccine Elicits Protective Immune Responses against Human Seasonal and Pre-pandemic Strains. Journal of Virology, 2021, 95, e0075921.	1.5	33
4	Impact of age and pre-existing immunity on the induction of human antibody responses against influenza B viruses. Human Vaccines and Immunotherapeutics, 2019, 15, 2030-2043.	1.4	32
5	Split inactivated COBRA vaccine elicits protective antibodies against H1N1 and H3N2 influenza viruses. PLoS ONE, 2018, 13, e0204284.	1.1	25
6	PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2. MSphere, 2022, 7, e0017922.	1.3	25
7	H2 influenza viruses: designing vaccines against future H2 pandemics. Biochemical Society Transactions, 2019, 47, 251-264.	1.6	23
8	SARS-CoV-2 and Influenza A Virus Coinfections in Ferrets. Journal of Virology, 2022, 96, JVI0179121.	1.5	23
9	Vaccination with a chikungunya virus-like particle vaccine exacerbates disease in aged mice. PLoS Neglected Tropical Diseases, 2019, 13, e0007316.	1.3	21
10	Next Generation of Computationally Optimized Broadly Reactive HA Vaccines Elicited Cross-Reactive Immune Responses and Provided Protection against H1N1 Virus Infection. Vaccines, 2021, 9, 793.	2.1	21
11	Computationally Optimized Broadly Reactive H2 HA Influenza Vaccines Elicited Broadly Cross-Reactive Antibodies and Protected Mice from Viral Challenges. Journal of Virology, 2020, 95, .	1.5	20
12	Convergent antibody evolution and clonotype expansion following influenza virus vaccination. PLoS ONE, 2021, 16, e0247253.	1.1	19
13	SalivaSTAT: Direct-PCR and Pooling of Saliva Samples Collected in Healthcare and Community Setting for SARS-CoV-2 Mass Surveillance. Diagnostics, 2021, 11, 904.	1.3	19
14	A computationally designed H5 antigen shows immunological breadth of coverage and protects against drifting avian strains. Vaccine, 2019, 37, 2369-2376.	1.7	17
15	Bivalent H1 and H3 COBRA Recombinant Hemagglutinin Vaccines Elicit Seroprotective Antibodies against H1N1 and H3N2 Influenza Viruses from 2009 to 2019. Journal of Virology, 2022, 96, e0165221.	1.5	17
16	Dual oxidase 1 promotes antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
17	Structural and antigenic characterization of a computationally-optimized H5 hemagglutinin influenza vaccine. Vaccine, 2019, 37, 6022-6029.	1.7	13
18	Affinity Tag Coating Enables Reliable Detection of Antigen-Specific B Cells in Immunospot Assays. Cells, 2021, 10, 1843.	1.8	13

Ted Ross

#	Article	IF	CITATIONS
19	Next-Generation Computationally Designed Influenza Hemagglutinin Vaccines Protect against H5Nx Virus Infections. Pathogens, 2021, 10, 1352.	1.2	12
20	Computationally optimized broadly reactive vaccine based upon swine H1N1 influenza hemagglutinin sequences protects against both swine and human isolated viruses. Human Vaccines and Immunotherapeutics, 2019, 15, 2013-2029.	1.4	11
21	The Effect of Waning on Antibody Levels and Memory B Cell Recall following SARS-CoV-2 Infection or Vaccines, 2022, 10, 696.	2.1	11
22	T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response. Human Vaccines and Immunotherapeutics, 2018, 14, 2203-2207.	1.4	10
23	Generation of Monoclonal Antibodies against Immunoglobulin Proteins of the Domestic Ferret (<i>Mustela putorius furo</i>). Journal of Immunology Research, 2017, 2017, 1-13.	0.9	9
24	Human COBRA 2 vaccine contains two major epitopes that are responsible for eliciting neutralizing antibody responses against heterologous clades of viruses. Vaccine, 2020, 38, 830-839.	1.7	9
25	Hemagglutination Inhibition (HAI) antibody landscapes after vaccination with H7Nx virus like particles. PLoS ONE, 2021, 16, e0246613.	1.1	9
26	High-Throughput Next-Generation Sequencing Respiratory Viral Panel: A Diagnostic and Epidemiologic Tool for SARS-CoV-2 and Other Viruses. Viruses, 2021, 13, 2063.	1.5	9
27	Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. MSphere, 2021, 6, .	1.3	8
28	An Influenza Virus Hemagglutinin Computationally Optimized Broadly Reactive Antigen Elicits Antibodies Endowed with Group 1 Heterosubtypic Breadth against Swine Influenza Viruses. Journal of Virology, 2020, 94, .	1.5	7
29	Sex disparities in influenza: A multiscale network analysis. IScience, 2022, 25, 104192.	1.9	7
30	Dried SARS-CoV-2 virus maintains infectivity to Vero E6 cells for up to 48 h. Veterinary Microbiology, 2020, 251, 108907.	0.8	6
31	Universal Dengue Vaccine Elicits Neutralizing Antibodies against Strains from All Four Dengue Virus Serotypes. Journal of Virology, 2021, 95, .	1.5	6
32	Impact of diabetes status on immunogenicity of trivalent inactivated influenza vaccine in older adults. Influenza and Other Respiratory Viruses, 2022, 16, 562-567.	1.5	6
33	Efficacy of recombinant Marek's disease virus vectored vaccines with computationally optimized broadly reactive antigen (COBRA) hemagglutinin insert against genetically diverse H5 high pathogenicity avian influenza viruses. Vaccine, 2021, 39, 1933-1942.	1.7	5
34	Next generation live-attenuated influenza vaccine platforms. Expert Review of Vaccines, 2022, , 1-14.	2.0	5
35	A Competitive Hemagglutination Inhibition Assay for Dissecting Functional Antibody Activity against Influenza Virus. Journal of Virology, 2021, 95, e0237920.	1.5	4
36	Month of Influenza Virus Vaccination Influences Antibody Responses in Children and Adults. Vaccines, 2021, 9, 68.	2.1	4

Ted Ross

#	Article	IF	CITATIONS
37	Evolution of A(H1N1) pdm09 influenza virus masking by glycosylation. Expert Review of Vaccines, 2021, 20, 519-526.	2.0	3
38	Impaired memory B-cell recall responses in the elderly following recurrent influenza vaccination. PLoS ONE, 2021, 16, e0254421.	1.1	3
39	Influenza hemagglutinin antigenic distance measures capture trends in HAI differences and infection outcomes, but are not suitable predictive tools. Vaccine, 2020, 38, 5822-5830.	1.7	2
40	An H1N1 Computationally Optimized Broadly Reactive Antigen Elicits a Neutralizing Antibody Response against an Emerging Human-Infecting Eurasian Avian-Like Swine Influenza Virus. Journal of Virology, 2021, 95, e0242120.	1.5	2
41	Exploit T cell Immunity for Rapid, Safe and Effective COVID-19 Vaccines. Expert Review of Vaccines, 2020, 19, 781-784.	2.0	1
42	Seasonal influenza vaccination does not effectively expand H2 cross-reactive antibodies in humans. Vaccine, 2021, 39, 4173-4183.	1.7	1
43	2018 ISV Congress: advances in the 100 years since the world's deadliest pandemic. Human Vaccines and Immunotherapeutics, 2019, 15, 2006-2008.	1.4	0
44	Dataset of antigenic distance measures, hemagglutination inhibition, viral lung titers, and weight loss in mice and ferrets when exposed to HA-based vaccination or sub-lethal A(H1) influenza infection. Data in Brief, 2020, 32, 106118.	0.5	0
45	Influence of the H1N1 influenza pandemic on the humoral immune response to seasonal flu vaccines. PLoS ONE, 2021, 16, e0258453.	1.1	0
46	Novel H7N9 influenza immunogen design enhances mobilization of seasonal influenza T cell memory in H3N2 pre-immune mice. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	0