Lobat Tayebi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8113442/publications.pdf

Version: 2024-02-01

47409 90395 7,161 186 49 73 citations h-index g-index papers 190 190 190 9424 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	In vivo efficacy of <scp>3D</scp> â€printed elastin–gelatin–hyaluronic acid scaffolds for regeneration of nasal septal cartilage defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 614-624.	1.6	14
2	The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Critical Reviews in Food Science and Nutrition, 2022, 62, 3658-3697.	5.4	27
3	Atomistic insight into 2D COFs as antiviral agents against SARS-CoV-2. Materials Chemistry and Physics, 2022, 276, 125382.	2.0	3
4	Preparation and characterization of TiO ₂ oated polymerization of methyl methacrylate (PMMA) for biomedical applications: In vitro study. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	0.8	3
5	The inhibitory effect of curcumin loaded poly (vinyl caprolactam) nanohydrogel on insulin fibrillation. Process Biochemistry, 2022, 117, 209-218.	1.8	4
6	Development of a modular reinforced bone tissue engineering scaffold with enhanced mechanical properties. Materials Letters, 2022, 318, 132170.	1.3	2
7	Biological aspects in controlling angiogenesis: current progress. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	11
8	Microfluidicâ€assisted fabrication of reverse micelle/PLGA hybrid microspheres for sustained vascular endothelial growth factor delivery. Biotechnology and Applied Biochemistry, 2021, 68, 616-625.	1.4	7
9	A 3D nanostructured calcium-aluminum-silicate scaffold with hierarchical meso-macroporosity for bone tissue regeneration: Fabrication, sintering behavior, surface modification and in vitro studies. Journal of the European Ceramic Society, 2021, 41, 941-962.	2.8	24
10	Recent developments in targeting genes and pathways by RNAiâ€based approaches in colorectal cancer. Medicinal Research Reviews, 2021, 41, 395-434.	5.0	12
11	Concurrent application of conductive biopolymeric chitosan/ polyvinyl alcohol/ MWCNTs nanofibers, intracellular signaling manipulating molecules and electrical stimulation for more effective cardiac tissue engineering. Materials Chemistry and Physics, 2021, 258, 123842.	2.0	42
12	Assessment of pH Responsive Delivery of Methotrexate Based on PHEMA-st-PEG-DA Nanohydrogels. Macromolecular Research, 2021, 29, 54-61.	1.0	19
13	Application of 3D Printing in Reconstruction of Oral and Maxillofacial Multi- and Interfacial Tissue Defects., 2021,, 167-217.		O
14	3D Printing Methods Applicable in Oral and Maxillofacial Surgery. , 2021, , 11-60.		1
15	3D Printing in Treatment of Soft, Hard, and Critical-Sized Oral and Maxillofacial Tissue Defects. , 2021, , 119-166.		0
16	Polyethylene glycol–modified DOTAP:cholesterol/adenovirus hybrid vectors have improved transduction efficiency and reduced immunogenicity. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	8
17	Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA/ \hat{I}^2 -TCP nanocomposite scaffolds. Bioprinting, 2021, 21, e00117.	2.9	10
18	Molecular insight into optimizing the N- and P-doped fullerenes for urea removal in wearable artificial kidneys. Journal of Materials Science: Materials in Medicine, 2021, 32, 49.	1.7	3

#	Article	IF	CITATIONS
19	Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres. ACS Applied Materials & Enterfaces, 2021, 13, 24370-24384.	4.0	6
20	Vascularization strategies in tissue engineering approaches for soft tissue repair. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 747-762.	1.3	40
21	Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties. ACS Omega, 2021, 6, 23117-23128.	1.6	4
22	Highly selective magnetic dual template molecularly imprinted polymer for simultaneous enrichment of sulfadiazine and sulfathiazole from milk samples based on syringe–to–syringe magnetic solid–phase microextraction. Talanta, 2021, 232, 122449.	2.9	39
23	Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. Journal of Functional Biomaterials, 2021, 12, 71.	1.8	25
24	Incorporation of functionalized reduced graphene oxide/magnesium nanohybrid to enhance the osteoinductivity capability of 3D printed calcium phosphate-based scaffolds. Composites Part B: Engineering, 2020, 185, 107749.	5.9	45
25	Critical-sized bone defects regeneration using a bone-inspired 3D bilayer collagen membrane in combination with leukocyte and platelet-rich fibrin membrane (L-PRF): An in vivo study. Tissue and Cell, 2020, 63, 101326.	1.0	7
26	Polymeric scaffolds for dental pulp tissue engineering: A review. Dental Materials, 2020, 36, e47-e58.	1.6	65
27	Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials, 2020, 232, 119707.	5.7	138
28	<p>A Review on the Biodistribution, Pharmacokinetics and Toxicity of Bismuth-Based Nanomaterials</p> . International Journal of Nanomedicine, 2020, Volume 15, 7079-7096.	3.3	23
29	Synthesis of novel reducing agent for formation of metronidazole-capped silver nanoparticle and evaluating antibacterial efficiency in gram-positive and gram-negative bacteria. Heliyon, 2020, 6, e04747.	1.4	20
30	A tri-component knee plug for the 3rd generation of autologous chondrocyte implantation. Scientific Reports, 2020, 10, 17048.	1.6	4
31	3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2020, 31, 85.	1.7	17
32	Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Scientific Reports, 2020, 10, 11764.	1.6	29
33	<p>Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 5445-5458.	3. 3	102
34	Nanoâ€hydroxyapatite and nanoâ€hydroxyapatite/zinc oxide scaffold for bone tissue engineering application. International Journal of Applied Ceramic Technology, 2020, 17, 2752-2761.	1.1	25
35	Graphite/gold nanoparticles electrode for direct protein attachment: characterization and gas sensing application. Environmental Science and Pollution Research, 2020, 27, 43202-43211.	2.7	2
36	Drug-delivery Ca-Mg silicate scaffolds encapsulated in PLGA. International Journal of Pharmaceutics, 2020, 589, 119855.	2.6	18

#	Article	IF	Citations
37	Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. European Polymer Journal, 2020, 140, 110051.	2.6	57
38	<p>Biomedical Applications of TiO₂ Nanostructures: Recent Advances</p> . International Journal of Nanomedicine, 2020, Volume 15, 3447-3470.	3.3	211
39	Evaluation of mechanical and biocompatibility properties of hydroxyapatite/manganese dioxide nanocomposite scaffolds for bone tissue engineering application. International Journal of Applied Ceramic Technology, 2020, 17, 2439-2449.	1.1	10
40	Development of a novel carboxamide-based off–on switch fluorescence sensor: Hg ²⁺ , Zn ²⁺ and Cd ²⁺ . New Journal of Chemistry, 2020, 44, 11841-11852.	1.4	21
41	<p>Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4237-4256.	3.3	28
42	PLGA-coated drug-loaded nanotubes anodically grown on nitinol. Materials Science and Engineering C, 2020, 116, 111174.	3.8	12
43	Biodegradable Magnesium Bone Implants Coated with a Novel Bioceramic Nanocomposite. Materials, 2020, 13, 1315.	1.3	36
44	Bismuthâ€Based Nanomaterials: Recent Advances in Tumor Targeting and Synergistic Cancer Therapy Techniques. Advanced Healthcare Materials, 2020, 9, e1901695.	3.9	39
45	<p>Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4363-4392.	3.3	76
46	Electrical and mechanical properties of BZTÂâ^'Â <i>x</i> BCT leadâ€free piezoceramics. International Journal of Applied Ceramic Technology, 2020, 17, 1891-1898.	1.1	9
47	Mechanistic Assessment of Functionalized Mesoporous Silica-Mediated Insulin Fibrillation. Journal of Physical Chemistry B, 2020, 124, 1637-1652.	1.2	10
48	<p>Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions</p> . International Journal of Nanomedicine, 2020, Volume 15, 363-386.	3.3	34
49	Magnetic dual-template molecularly imprinted polymer based on syringe-to-syringe magnetic solid-phase microextraction for selective enrichment of p-Coumaric acid and ferulic acid from pomegranate, grape, and orange samples. Food Chemistry, 2020, 325, 126902.	4.2	30
50	Tissue Engineering in Periodontal Regeneration. , 2020, , 301-327.		2
51	Applications of Hard and Soft Tissue Engineering in Dentistry. , 2020, , 179-193.		2
52	Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofacial Plastic and Reconstructive Surgery, 2020, 42, 18.	0.7	65
53	Hydrogen Peroxide Preconditioning Promotes Protective Effects of Umbilical Cord Vein Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis. Advanced Pharmaceutical Bulletin, 2020, 10, 72-80.	0.6	17
54	Effect of Hypoxia Preconditioned Adipose-Derived Mesenchymal Stem Cell Conditioned Medium on Cerulein-Induced Acute Pancreatitis in Mice. Advanced Pharmaceutical Bulletin, 2020, 10, 297-306.	0.6	12

#	Article	IF	Citations
55	Biomedical Materials in Dentistry. , 2020, , 3-20.		6
56	A new phantom to evaluate the tissue dissolution ability of endodontic irrigants and activating devices. Restorative Dentistry & Endodontics, 2020, 45, e45.	0.6	0
57	Conductive nanofibrous Chitosan/PEDOT:PSS tissue engineering scaffolds. Materials Chemistry and Physics, 2019, 237, 121882.	2.0	88
58	Recent Advancements in aptamer-bioconjugates: Sharpening Stones for breast and prostate cancers targeting. Journal of Drug Delivery Science and Technology, 2019, 53, 101146.	1.4	23
59	Bottom-up synthesis of nitrogen and oxygen co-decorated carbon quantum dots with enhanced DNA plasmid expression. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110543.	2.5	25
60	Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomedical Microdevices, 2019, 21, 93.	1.4	24
61	Design of a new 3Dâ€printed joint plug. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2360.	0.8	1
62	<p>EDTA-modified mesoporous silica as supra adsorbent of copper ions with novel approach as an antidote agent in copper toxicity</p> . International Journal of Nanomedicine, 2019, Volume 14, 7781-7792.	3.3	20
63	Influence of conductive PEDOT:PSS in a hard tissue scaffold: In vitro and in vivo study. Journal of Bioactive and Compatible Polymers, 2019, 34, 436-441.	0.8	16
64	<p>Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam)</p> . International Journal of Nanomedicine, 2019, Volume 14, 6901-6915.	3.3	54
65	Self-assembling of graphene oxide on carbon quantum dot loaded liposomes. Materials Science and Engineering C, 2019, 103, 109860.	3.8	9
66	Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomaterialia, 2019, 92, 1-18.	4.1	255
67	Bicyclic peptides: types, synthesis and applications. Drug Discovery Today, 2019, 24, 1311-1319.	3.2	34
68	Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dental Materials, 2019, 35, 990-1006.	1.6	48
69	Graphene and its derivatives: Opportunities and challenges in dentistry. Materials Science and Engineering C, 2019, 102, 171-185.	3.8	183
70	Gene therapy in rheumatoid arthritis: Strategies to select therapeutic genes. Journal of Cellular Physiology, 2019, 234, 16913-16924.	2.0	12
71	A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Mikrochimica Acta, 2019, 186, 787.	2.5	74
72	Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery. RSC Advances, 2019, 9, 33246-33256.	1.7	16

#	Article	IF	CITATIONS
73	The evaluation of the mechanical characteristics of the synthesized glass-ionomer cements (GICs): the effect of hydroxyapatite and fluorapatite nanoparticles and glass powders. Journal of the Australian Ceramic Society, 2019, 55, 507-517.	1.1	5
74	Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: a new therapeutic approach. Biomedicine and Pharmacotherapy, 2019, 109, 1196-1205.	2.5	31
75	Applications of 3D printing on craniofacial bone repair: A systematic review. Journal of Dentistry, 2019, 80, 1-14.	1.7	103
76	Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 2019, 96, 105-113.	3.8	97
77	Immunohistochemical analysis of IL-1 Receptor 1 in the discs of patients with temporomandibular joint dysfunction. Cranio - Journal of Craniomandibular Practice, 2019, 37, 175-180.	0.6	3
78	Poly(lactic-co-glycolic acid)(PLGA)/TiO 2 nanotube bioactive composite as a novel scaffold for bone tissue engineering: In vitro and in vivo studies. Biologicals, 2018, 53, 51-62.	0.5	48
79	Single phased silicate-containing calcium phosphate bioceramics: Promising biomaterials for periodontal repair. Ceramics International, 2018, 44, 11003-11012.	2.3	24
80	<i>In vitro</i> effect of graphene structures as an osteoinductive factor in bone tissue engineering: A systematic review. Journal of Biomedical Materials Research - Part A, 2018, 106, 2284-2343.	2.1	56
81	3D-printed thick structured gelatin membrane for engineering of heterogeneous tissues. Materials Letters, 2018, 217, 39-43.	1.3	16
82	Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohydrate Polymers, 2018, 190, 281-294.	5.1	71
83	The efficacy of commercial tooth storage media for maintaining the viability of human periodontal ligament fibroblasts. International Endodontic Journal, 2018, 51, 58-68.	2.3	6
84	Evaluation of the in vitro biodegradation and biological behavior of poly(lactic- <i>co</i> glycolic) Tj ETQq0 0 0 rg Journal of Bioactive and Compatible Polymers, 2018, 33, 146-159.	BT /Overlo 0.8	ck 10 Tf 50 3 6
85	Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dental Materials, 2018, 34, 209-220.	1.6	26
86	Investigation of the mechanical properties and degradability of a modified chitosan-based scaffold. Materials Chemistry and Physics, 2018, 204, 187-194.	2.0	13
87	Evaluation of the mechanical properties, in vitro biodegradability and cytocompatibility of natural chitosan/hydroxyapatite/nano-Fe3O4 composite. Ceramics International, 2018, 44, 275-281.	2.3	30
88	The cross-disciplinary emergence of 3D printed bioceramic scaffolds in orthopedic bioengineering. Ceramics International, 2018, 44, 1-9.	2.3	52
89	Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomaterialia, 2018, 65, 376-392.	4.1	63
90	A comparison between the properties of natural hydroxyapatite produced by cold isostatic pressing and spark plasma sintering techniques. Journal of the Australian Ceramic Society, 2018, 54, 337-344.	1.1	4

#	Article	IF	Citations
91	Advancements in craniofacial prosthesis fabrication: A narrative review of holistic treatment. Journal of Advanced Prosthodontics, 2018, 10, 430.	1.1	12
92	Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Scientific Reports, 2018, 8, 14889.	1.6	46
93	In vitro and in vivo evaluation of cephalosporins for the treatment of Lyme disease. Drug Design, Development and Therapy, 2018, Volume 12, 2915-2921.	2.0	4
94	Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating. Journal of Materials Science: Materials in Medicine, 2018, 29, 159.	1.7	17
95	Rheological properties of contemporary nanohybrid dental resin composites: The influence of preheating. Polymer Testing, 2018, 72, 157-163.	2.3	25
96	Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel. Carbohydrate Polymers, 2018, 202, 600-610.	5.1	28
97	Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. Nanotechnology, 2018, 29, 475101.	1.3	54
98	Optimizing the hybrid nanostructure of functionalized reduced graphene oxide/silver for highly efficient cancer nanotherapy. New Journal of Chemistry, 2018, 42, 13157-13168.	1.4	22
99	Cartilage and facial muscle tissue engineering and regeneration: a mini review. Bio-Design and Manufacturing, 2018, 1, 115-122.	3.9	4
100	3D-printed membrane for guided tissue regeneration. Materials Science and Engineering C, 2018, 84, 148-158.	3.8	46
101	Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading. Biotechnology and Applied Biochemistry, 2017, 64, 433-442.	1.4	36
102	Development of a DNA-liposome complex for gene delivery applications. Materials Science and Engineering C, 2017, 75, 191-197.	3.8	46
103	Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Advances, 2017, 7, 10638-10649.	1.7	128
104	Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting, 2017, 6, 1-7.	2.9	46
105	An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene–gold nanostructures. RSC Advances, 2017, 7, 2365-2372.	1.7	32
106	Bioreactor design for oral and dental tissue engineering. , 2017, , 193-204.		2
107	3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dental Materials, 2017, 33, 1205-1216.	1.6	83
108	From solvent-free microspheres to bioactive gradient scaffolds. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1157-1169.	1.7	14

#	Article	IF	CITATIONS
109	Porous magnesium-based scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 71, 1253-1266.	3.8	212
110	Screening of NCI-DTP library to identify new drug candidates for Borrelia burgdorferi. Journal of Antibiotics, 2017, 70, 308-312.	1.0	14
111	A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Materials Science and Engineering C, 2017, 70, 913-929.	3.8	71
112	Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2017, 70, 586-598.	3.8	66
113	Investigation of mechanical properties of natural hydroxyapatite samples prepared by cold isostatic pressing method. Journal of Alloys and Compounds, 2017, 693, 1150-1156.	2.8	52
114	Bioactive glasses and calcium phosphates. , 2017, , 7-24.		5
115	Facial muscle tissue engineering. , 2017, , 353-365.		2
116	Introduction to oral and dental tissue engineering., 2017,, 3-6.		10
117	Stem cells from oral and maxillofacial tissues. , 2017, , 185-191.		0
118	Vascularization., 2017,, 367-383.		1
119	Craniofacial surgery, orthodontics, and tissue engineering. , 2017, , 445-465.		0
120	Specific considerations in scaffold design for oral tissue engineering., 2017, , 157-183.		6
121	Oral nerve tissue repair and regeneration. , 2017, , 319-336.		1
122	Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening. Drug Design, Development and Therapy, 2016, 10, 1307.	2.0	49
123	Threeâ€Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery. Journal of Prosthodontics, 2016, 25, 310-318.	1.7	51
124	Bioreactors for heart valve tissue engineering: a review. Journal of Chemical Technology and Biotechnology, 2016, 91, 847-856.	1.6	14
125	Dental Applications of Naturalâ€Origin Polymers in Hard and Soft Tissue Engineering. Journal of Prosthodontics, 2016, 25, 510-517.	1.7	20
126	Development of PLGA-coated \hat{l}^2 -TCP scaffolds containing VEGF for bone tissue engineering. Materials Science and Engineering C, 2016, 69, 780-788.	3.8	107

#	Article	IF	Citations
127	Biodegradation properties of PLGA/nano-fluorhydroxyapatite composite microsphere-sintered scaffolds. Dental Materials, 2016, 32, e49-e50.	1.6	9
128	Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Materials Science and Engineering C, 2016, 65, 338-344.	3.8	61
129	Is cell viability always directly related to corrosion resistance of stainless steels?. Materials Science and Engineering C, 2016, 62, 439-443.	3.8	4
130	Functionalized R9–reduced graphene oxide as an efficient nano-carrier for hydrophobic drug delivery. RSC Advances, 2016, 6, 74072-74084.	1.7	37
131	Recent advancements in regenerative dentistry: A review. Materials Science and Engineering C, 2016, 69, 1383-1390.	3.8	55
132	Efficacy of the biomaterials 3 wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic- co -glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Materials Science and Engineering C, 2016, 69, 171-183.	3.8	38
133	Fabrication of gradient scaffolds for bone and dental tissue engineering. Dental Materials, 2016, 32, e47-e48.	1.6	3
134	Microfluidic Manipulation of Core/Shell Nanoparticles for Oral Delivery of Chemotherapeutics: A New Treatment Approach for Colorectal Cancer. Advanced Materials, 2016, 28, 4134-4141.	11.1	74
135	Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS). Journal of Materials Science: Materials in Medicine, 2015, 26, 274.	1.7	45
136	Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. Materials Science and Engineering C, 2015, 49, 436-444.	3.8	87
137	Effect of ion substitution on properties of bioactive glasses: A review. Ceramics International, 2015, 41, 7241-7251.	2.3	216
138	Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications. Applied Surface Science, 2015, 338, 137-145.	3.1	70
139	Transdermal Delivery of Functional Collagen Via Polyvinylpyrrolidone Microneedles. Annals of Biomedical Engineering, 2015, 43, 2978-2990.	1.3	30
140	In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO. Journal of Materials Science: Materials in Medicine, 2015, 26, 184.	1.7	27
141	Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1809-1819.	1.7	49
142	In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1394-1404.	1.1	34
143	Regenerative influence of nanostructured bredigite (Ca7MgSi4O16)/anodic spark coating on biodegradable AZ91 magnesium alloy implants for bone healing. Materials Letters, 2015, 155, 97-101.	1.3	22
144	On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Nanomedicine, 2015, 10, 3431-3449.	1.7	43

#	Article	IF	Citations
145	In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceramics International, 2015, 41, 3094-3100.	2.3	110
146	<i>In vivo</i> study of nanostructured akermanite/ <scp>PEO</scp> coating on biodegradable magnesium alloy for biomedical applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 1798-1808.	2.1	35
147	In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications. Materials Science and Engineering C, 2015, 48, 21-27.	3.8	96
148	3D conductive nanocomposite scaffold for bone tissue engineering. International Journal of Nanomedicine, $2014, 9, 167$.	3.3	114
149	Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique. Surface Engineering, 2014, 30, 545-551.	1.1	31
150	Hybrid Macroporous Gelatin/Bioactive-Glass/Nanosilver Scaffolds with Controlled Degradation Behavior and Antimicrobial Activity for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2014, 10, 911-931.	0.5	106
151	Electrospun Nanofibers: From Filtration Membranes to Highly Specialized Tissue Engineering Scaffolds. Journal of Nanoscience and Nanotechnology, 2014, 14, 522-534.	0.9	86
152	The effect of hyaluronic acid on biofunctionality of gelatin–collagen intestine tissue engineering scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, 3130-3139.	2.1	47
153	Reduction of thermal conductivity of bulk nanostructured bismuth telluride composites embedded with silicon nano-inclusions. Journal of Applied Physics, 2014, 115, .	1.1	25
154	Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy. Journal of Applied Physics, 2014, 115, 204308.	1.1	7
155	Microstructural and mechanical study of PCL coated Mg scaffolds. Surface Engineering, 2014, 30, 920-926.	1.1	35
156	Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2014, 117, 432-440.	2.5	69
157	Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceramics International, 2014, 40, 3865-3872.	2.3	76
158	Microâ€arc oxidation and electrophoretic deposition of nanoâ€grain merwinite (Ca ₃ MgSi ₂ O ₈) surface coating on magnesium alloy as biodegradable metallic implant. Surface and Interface Analysis, 2014, 46, 387-392.	0.8	24
159	Green synthesis of a new gelatin-based antimicrobial scaffold for tissue engineering. Materials Science and Engineering C, 2014, 39, 235-244.	3.8	46
160	In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants. Materials Science and Engineering C, 2014, 41, 168-177.	3.8	80
161	Energy Harvesting Capability of Lipidâ€Merocyanine Macromolecules: A New Design and Performance Model Development. Photochemistry and Photobiology, 2014, 90, 517-521.	1.3	0
162	Conducting scaffolds for liver tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 4169-4181.	2.1	59

#	Article	IF	CITATIONS
163	Improvement of Biodegradability, Bioactivity, Mechanical Integrity and Cytocompatibility Behavior of Biodegradable Mg Based Orthopedic Implants Using Nanostructured Bredigite (Ca7MgSi4O16) Bioceramic Coated via ASD/EPD Technique. Annals of Biomedical Engineering, 2014, 42, 2537-2550.	1.3	35
164	Innovative surface modification of orthopaedic implants with positive effects on wettability and <i>in vitro</i> anti-corrosion performance. Surface Engineering, 2014, 30, 688-692.	1.1	29
165	Nanostructured merwinite bioceramic coating on Mg alloy deposited by electrophoretic deposition. Ceramics International, 2014, 40, 9473-9484.	2.3	56
166	Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering. Materials Letters, 2014, 132, 106-110.	1.3	79
167	In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants. Applied Surface Science, 2014, 313, 60-66.	3.1	60
168	The effect of phase heterogeneity on thermoelectric properties of nanostructured silicon germanium alloy. Journal of Applied Physics, 2013, 114, 023705.	1.1	21
169	Surface modification of magnesium alloy implants by nanostructured bredigite coating. Materials Letters, 2013, 113, 174-178.	1.3	49
170	Multilayer zirconium titanate thin films prepared by a sol–gel deposition method. Ceramics International, 2013, 39, 1271-1276.	2.3	37
171	Nanostructured zirconium titanate fibers prepared by particulate sol–gel and cellulose templating techniques. Journal of Alloys and Compounds, 2013, 568, 102-105.	2.8	41
172	A new double-layer sol–gel coating to improve the corrosion resistance of a medical-grade stainless steel in a simulated body fluid. Materials Letters, 2013, 97, 162-165.	1.3	44
173	Interlamellar Organization of Phase Separated Domains in Multi-Component Lipid Multilayers: Energetic Considerations. International Journal of Molecular Sciences, 2013, 14, 3824-3833.	1.8	4
174	In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants. PLoS ONE, 2013, 8, e61633.	1.1	52
175	Preparation of Al–SiC–Al ₂ O ₃ metal matrix composite powder by mechanochemical reaction between Al, SiO ₂ and C. Micro and Nano Letters, 2013, 8, 519-522.	0.6	2
176	Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant. Materials, 2013, 6, 3727-3741.	1.3	73
177	DEVELOPMENT AND CHARACTERIZATION OF SiC â€" Al ceramic Matrix Nanocomposite powder. Nano, 2013, 08, 1350059.	0.5	3
178	<i>Withdrawn</i> : Performance enhancement of electrospun carbon fibrous nanostructures. Journal of Applied Polymer Science, 2013, 129, 3077-3077.	1.3	2
179	Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry. International Journal of Nanomedicine, 2013, 8, 1665.	3.3	67
180	The Effect of Hyaluronic Acid on Biofunctionality of Gelatin-Collagen Tissue Engineering Scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	2.1	2

#	Article	IF	CITATION
181	Zirconium titanate thin film prepared by an aqueous particulate sol–gel spin coating process using carboxymethyl cellulose as dispersant. Materials Letters, 2012, 88, 5-8.	1.3	40
182	Aqueous sol–gel synthesis of zirconium titanate (ZrTiO4) nanoparticles using chloride precursors. Ceramics International, 2012, 38, 6145-6149.	2.3	42
183	Antibacterial activity of silver photodeposited nepheline thin film coatings. Ceramics International, 2012, 38, 5445-5451.	2.3	33
184	Enhancement of fracture toughness in bioactive glass-based nanocomposites with nanocrystalline forsterite as advanced biomaterials for bone tissue engineering applications. Ceramics International, 2012, 38, 5007-5014.	2.3	62
185	Electroconductive Nanocomposite Scaffolds: A New Strategy Into Tissue Engineering and Regenerative Medicine., 0,,.		18
186	Wear and Electrochemical Behavior of High-Nitrogen, Nickel-Free Austenitic Stainless Steel Produced by Hot Powder Forging. Journal of Materials Engineering and Performance, 0, , 1.	1.2	0