Hao-Sheng Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8113404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiâ€Functional MoO ₃ Doping of Carbonâ€Nanotube Top Electrodes for Highly Transparent and Efficient Semiâ€Transparent Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	14
2	Scalable eDIPS-based single-walled carbon nanotube films for conductive transparent electrodes in organic solar cells. Applied Physics Express, 2022, 15, 046505.	2.4	2
3	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
4	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	2
5	(Invited) Toward Nanocarbon Materials-Based Organic and Perovskite Solar Cells. ECS Meeting Abstracts, 2022, MA2022-01, 796-796.	0.0	0
6	(Invited) Evaporable Fullerene-Fused Ketone Via One-Step Direct Oxidation of Alkoxy to Ketone: Fullerene As a Redox Active Pendant. ECS Meeting Abstracts, 2022, MA2022-01, 812-812.	0.0	0
7	One-step direct oxidation of fullerene-fused alkoxy ethers to ketones for evaporable fullerene derivatives. Communications Chemistry, 2021, 4, .	4.5	12
8	Cationic nitrogen-doped graphene as a p-type modifier for high-performance PEDOT:PSS hole transporters in organic solar cells. Japanese Journal of Applied Physics, 2021, 60, 070902.	1.5	6
9	Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virusâ€Inoculated Perovskite Solar Cells with a Certified Efficiency of 22.3%. Advanced Energy Materials, 2021, 11, 2101221.	19.5	20
10	Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virusâ€Inoculated Perovskite Solar Cells with a Certified Efficiency of 22.3% (Adv. Energy Mater. 38/2021). Advanced Energy Materials, 2021, 11, 2170150.	19.5	1
11	Synthesis of Conjugated Donor–Acceptor Antiaromatic Porphyrins and Their Application to Perovskite Solar Cells. Journal of Organic Chemistry, 2021, , .	3.2	6
12	Denatured M13 Bacteriophageâ€Templated Perovskite Solar Cells Exhibiting High Efficiency. Advanced Science, 2020, 7, 2000782.	11.2	31
13	Polyaromatic Nanotweezers on Semiconducting Carbon Nanotubes for the Growth and Interfacing of Lead Halide Perovskite Crystal Grains in Solar Cells. Chemistry of Materials, 2020, 32, 5125-5133.	6.7	45
14	Successively Regioselective Electrosynthesis and Electron Transport Property of Stable Multiply Functionalized [60]Fullerene Derivatives. Research, 2020, 2020, 2059190.	5.7	27
15	(Invited) Highly Selective and Scalable Fullerene-Cation-Mediated Synthesis Accessing Cyclo[60]Fullerenes with 5-Membered-Carbon-Ring and Their Application to Perovskite Solar Cells. ECS Meeting Abstracts, 2020, MA2020-01, 788-788.	0.0	0
16	Polyaromatic Anthracene Clenchers on Semiconducting Carbon Nanotubes for Growth and Bridging of Perovskite Crystal Grains in Perovskite Solar Cells. ECS Meeting Abstracts, 2020, MA2020-01, 714-714.	0.0	0
17	Highly Selective and Scalable Fullerene-Cation-Mediated Synthesis Accessing Cyclo[60]fullerenes with Five-Membered Carbon Ring and Their Application to Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 8432-8439.	6.7	44
18	Li@C ₆₀ endohedral fullerene as a supraatomic dopant for C ₆₀ electron-transporting layers promoting the efficiency of perovskite solar cells. Chemical Communications, 2019, 55, 11837-11839.	4.1	26

HAO-SHENG LIN

#	Article	IF	CITATIONS
19	Controlled Redox of Lithium-Ion Endohedral Fullerene for Efficient and Stable Metal Electrode-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 16553-16558.	13.7	61
20	Stable and Reproducible 2D/3D Formamidinium–Lead–Iodide Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2486-2493.	5.1	64
21	High-Working-Pressure Sputtering of ZnO for Stable and Efficient Perovskite Solar Cells. ACS Applied Electronic Materials, 2019, 1, 389-396.	4.3	16
22	Highly Selective Synthesis of Tetrahydronaphthaleno[60]fullerenes via Fullerene-Cation-Mediated Intramolecular Cyclization. Journal of Organic Chemistry, 2019, 84, 16314-16322.	3.2	7
23	Vapor-Assisted Ex-Situ Doping of Carbon Nanotube toward Efficient and Stable Perovskite Solar Cells. Nano Letters, 2019, 19, 2223-2230.	9.1	72
24	Achieving High Efficiency in Solution-Processed Perovskite Solar Cells Using C ₆₀ /C ₇₀ Mixed Fullerenes. ACS Applied Materials & Interfaces, 2018, 10, 39590-39598.	8.0	67
25	Functionalization of [60]fullerene through fullerene cation intermediates. Chemical Communications, 2018, 54, 11244-11259.	4.1	62
26	Fullerene-Cation-Mediated Noble-Metal-Free Direct Introduction of Functionalized Aryl Groups onto [60]Fullerene. Organic Letters, 2018, 20, 3372-3376.	4.6	35
27	Regioselective acylation and carboxylation of [60]fulleroindoline via electrochemical synthesis. Organic Chemistry Frontiers, 2017, 4, 603-607.	4.5	26
28	The cyclopropanation of [60]fullerobenzofurans via electrosynthesis. Organic and Biomolecular Chemistry, 2017, 15, 3248-3254.	2.8	12
29	Palladium-Catalyzed Decarboxylative <i>ortho</i> -Acylation of Benzamides with α-Oxocarboxylic Acids. Journal of Organic Chemistry, 2017, 82, 12715-12725.	3.2	36
30	Solvent-free iodine-promoted synthesis of 3,2′-pyrrolinyl spirooxindoles from alkylidene oxindoles and enamino esters under ball-milling conditions. Chemical Communications, 2017, 53, 12477-12480.	4.1	29