Roger Rousseau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8113187/publications.pdf

Version: 2024-02-01

31902 51492 9,057 185 53 86 citations g-index h-index papers 190 190 190 9336 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nature Communications, 2015, 6, 6511.	5.8	370
2	The Role of Reducible Oxide–Metal Cluster Charge Transfer in Catalytic Processes: New Insights on the Catalytic Mechanism of CO Oxidation on Au/TiO ₂ from ab Initio Molecular Dynamics. Journal of the American Chemical Society, 2013, 135, 10673-10683.	6.6	308
3	Thermally-driven processes on rutile TiO2(110)-($1\tilde{A}$ –1): A direct view at the atomic scale. Progress in Surface Science, 2010, 85, 161-205.	3.8	282
4	Water-Lean Solvents for Post-Combustion CO ₂ Capture: Fundamentals, Uncertainties, Opportunities, and Outlook. Chemical Reviews, 2017, 117, 9594-9624.	23.0	249
5	Distribution of Ti ³⁺ Surface Sites in Reduced TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 7562-7572.	1.5	235
6	First-Principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase. Journal of the American Chemical Society, 2014, 136, 10287-10298.	6.6	226
7	Defining the Role of Excess Electrons in the Surface Chemistry of TiO ₂ . Journal of Physical Chemistry C, 2010, 114, 5891-5897.	1.5	202
8	Localized Electronic States from Surface Hydroxyls and Polarons in TiO ₂ (110). Journal of Physical Chemistry C, 2009, 113, 14583-14586.	1.5	196
9	Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chemical Reviews, 2020, 120, 11370-11419.	23.0	185
10	Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study. Journal of Catalysis, 2010, 271, 325-342.	3.1	174
11	Pulling Monatomic Gold Wires with Single Molecules: AnAb InitioSimulation. Physical Review Letters, 2002, 89, 186402.	2.9	169
12	CO Oxidation on Au/TiO ₂ : Condition-Dependent Active Sites and Mechanistic Pathways. Journal of the American Chemical Society, 2016, 138, 10467-10476.	6.6	159
13	Interaction of short-chain alkane thiols and thiolates with small gold clusters: Adsorption structures and energetics. Journal of Chemical Physics, 2001, 115, 4776-4786.	1.2	136
14	Atomistic Simulation of Water Percolation and Proton Hopping in Nafion Fuel Cell Membrane. Journal of Physical Chemistry B, 2010, 114, 13681-13690.	1.2	125
15	Effects of La ₂ O ₃ on the Mixed Higher Alcohols Synthesis from Syngas over Co Catalysts: A Combined Theoretical and Experimental Study. Journal of Physical Chemistry C, 2011, 115, 17440-17451.	1.5	119
16	Genesis and Stability of Hydronium Ions in Zeolite Channels. Journal of the American Chemical Society, 2019, 141, 3444-3455.	6.6	119
17	Inducing Desorption of Organic Molecules with a Scanning Tunneling Microscope: Theory and Experiments. Physical Review Letters, 2000, 85, 5372-5375.	2.9	112
18	(100) facets of \hat{I}^3 -Al2O3: The Active Surfaces for Alcohol Dehydration Reactions. Catalysis Letters, 2011, 141, 649-655.	1.4	105

#	Article	IF	Citations
19	Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: A combined experimental and theoretical study. Journal of Catalysis, 2014, 316, 11-23.	3.1	104
20	Dehydration, dehydrogenation, and condensation of alcohols on supported oxide catalysts based on cyclic (WO ₃) ₃ and (MoO ₃) ₃ clusters. Chemical Society Reviews, 2014, 43, 7664-7680.	18.7	99
21	Polarization- and Azimuth-Resolved Infrared Spectroscopy of Water on TiO (sub) 2 (sub) (110): Anisotropy and the Hydrogen-Bonding Network. Journal of Physical Chemistry Letters, 2012, 3, 778-784.	2.1	91
22	Assigning Protonation Patterns in Water Networks in Bacteriorhodopsin Based on Computed IR Spectra. Angewandte Chemie - International Edition, 2004, 43, 4804-4807.	7.2	90
23	Probing equilibrium of molecular and deprotonated water on TiO ₂ (110). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1801-1805.	3.3	90
24	Confinement effects and acid strength in zeolites. Nature Communications, 2021, 12, 2630.	5.8	90
25	Theoretical insights into the surface physics and chemistry of redox-active oxides. Nature Reviews Materials, 2020, 5, 460-475.	23.3	89
26	DFT+U Study on the Localized Electronic States and Their Potential Role During H $<$ sub $>$ 2 $<$ /sub $>$ 0 Dissociation and CO Oxidation Processes on CeO $<$ sub $>$ 2 $<$ /sub $>$ (111) Surface. Journal of Physical Chemistry C, 2013, 117, 23082-23089.	1.5	85
27	Evaluation of the aromaticity of borepin: synthesis and properties of 1-substituted borepins. Organometallics, 1993, 12, 3225-3231.	1.1	81
28	Dinitrogen Reduction by a Chromium(0) Complex Supported by a 16-Membered Phosphorus Macrocycle. Journal of the American Chemical Society, 2013, 135, 11493-11496.	6.6	81
29	Understanding the Role of Metal and Molecular Structure on the Electrocatalytic Hydrogenation of Oxygenated Organic Compounds. ACS Catalysis, 2019, 9, 9964-9972.	5.5	81
30	Detaching Thiolates from Copper and Gold Clusters:Â Which Bonds to Break?. Journal of the American Chemical Society, 2004, 126, 12103-12111.	6.6	79
31	Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis. Nature Catalysis, 2019, 2, 916-924.	16.1	79
32	Anharmonicity and Confinement in Zeolites: Structure, Spectroscopy, and Adsorption Free Energy of Ethanol in H-ZSM-5. Journal of Physical Chemistry C, 2016, 120, 7172-7182.	1.5	77
33	Catalytic Dehydration of 2-Propanol on (WO ₃) ₃ Clusters on TiO ₂ (110). Journal of the American Chemical Society, 2008, 130, 5059-5061.	6.6	76
34	Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations. Organometallics, 2011, 30, 6108-6118.	1.1	76
35	A Combined Experimental and Theoretical Study on the Activity and Selectivity of the Electrocatalytic Hydrogenation of Aldehydes. ACS Catalysis, 2018, 8, 7645-7658.	5.5	76
36	Towards "Mechanochemistry― Mechanically Induced Isomerizations of Thiolate–Gold Clusters. Angewandte Chemie - International Edition, 2003, 42, 2251-2253.	7.2	72

#	Article	IF	Citations
37	Exploring the Electronic Structure of Elemental Lithium: From Small Molecules to Nanoclusters, Bulk Metal, and Surfaces. Chemistry - A European Journal, 2000, 6, 2982-2993.	1.7	71
38	Temperature-Dependent Conformational Transitions and Hydrogen-Bond Dynamics of the Elastin-Like Octapeptide GVG(VPGVG): A Molecular-Dynamics Study. Biophysical Journal, 2004, 86, 1393-1407.	0.2	68
39	Computing Free Energy Landscapes: Application to Ni-based Electrocatalysts with Pendant Amines for H ₂ Production and Oxidation. ACS Catalysis, 2014, 4, 229-242.	5.5	68
40	The [(DT-TTF)2M(mnt)2] Family of Radical Ion Salts: From a Spin Ladder to Delocalised Conduction Electrons That Interact with Localised Magnetic Moments. Chemistry - A European Journal, 1999, 5, 2025-2039.	1.7	67
41	Quantum and Thermal Fluctuation Effects on the Photoabsorption Spectra of Clusters. Physical Review Letters, 2004, 92, 183401.	2.9	67
42	Defining Active Catalyst Structure and Reaction Pathways from ab Initio Molecular Dynamics and Operando XAFS: Dehydrogenation of Dimethylaminoborane by Rhodium Clusters. Journal of the American Chemical Society, 2009, 131, 10516-10524.	6.6	67
43	Toward Molecular Catalysts by Computer. Accounts of Chemical Research, 2015, 48, 248-255.	7.6	65
44	Folding and Unfolding of an Elastinlike Oligopeptide: "Inverse Temperature Transition,―Reentrance, and Hydrogen-Bond Dynamics. Physical Review Letters, 2004, 92, 148101.	2.9	63
45	Understanding Heterolytic H ₂ Cleavage and Water-Assisted Hydrogen Spillover on Fe ₃ O ₄ (001)-Supported Single Palladium Atoms. ACS Catalysis, 2019, 9, 7876-7887.	5.5	63
46	Effect of Collective Dynamics and Anharmonicity on Entropy in Heterogenous Catalysis: Building the Case for Advanced Molecular Simulations. ACS Catalysis, 2020, 10, 9236-9260.	5 . 5	63
47	Ethanol Conversion on Cyclic (MO3)3 (M = Mo, W) Clusters. Journal of Physical Chemistry C, 2014, 118, 4869-4877.	1.5	62
48	The Nature of Hydrogen Adsorption on Platinum in the Aqueous Phase. Angewandte Chemie - International Edition, 2019, 58, 3527-3532.	7.2	62
49	Structure and Dynamics of CO ₂ on Rutile TiO ₂ (110)-1×1. Journal of Physical Chemistry C, 2012, 116, 26322-26334.	1.5	60
50	Synthesis, Structure, and Bonding in Zirconocene Primary Phosphido (PHR-), Phosphinidene (PR2-), and Phosphide (P3-) Derivatives. Organometallics, 1994, 13, 1918-1926.	1.1	58
51	Polycarbon Ligand Chemistry:Â Electronic Interactions between a Mononuclear Ruthenium Fragment and a Cobaltâ''Carbon Cluster Core. Organometallics, 1999, 18, 3885-3897.	1.1	56
52	Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and Rh. ACS Catalysis, 2019, 9, 1120-1128.	5.5	55
53	An Organic Spin-Ladder Molecular Material. Angewandte Chemie International Edition in English, 1997, 36, 2324-2326.	4.4	54
54	The interaction of gold clusters with methanol molecules: Ab initio molecular dynamics of Aun+CH3OH and AunCH3OH. Journal of Chemical Physics, 2000, 112, 761-769.	1.2	54

#	Article	IF	CITATIONS
55	Environment of Metal–O–Fe Bonds Enabling High Activity in CO ₂ Reduction on Single Metal Atoms and on Supported Nanoparticles. Journal of the American Chemical Society, 2021, 143, 5540-5549.	6.6	54
56	Electronic Structure of Ruthenium(II) Polyynyl Complexes. Organometallics, 2001, 20, 4502-4509.	1.1	53
57	Electrochemically Tunable Protonâ€Coupled Electron Transfer in Pdâ€Catalyzed Benzaldehyde Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 1501-1505.	7.2	53
58	Structure, dynamics and vibrational spectrum of supercritical CO2/H2O mixtures from ab initio molecular dynamics as a function of water cluster formation. Physical Chemistry Chemical Physics, 2010, 12, 8759.	1.3	51
59	Ab initioSimulation of Phase Transitions and Dissociation ofH2Sat High Pressure. Physical Review Letters, 2000, 85, 1254-1257.	2.9	50
60	Low-Temperature Oxidation of Methanol to Formaldehyde on a Model Single-Atom Catalyst: Pd Atoms on Fe ₃ O ₄ (001). ACS Catalysis, 2019, 9, 10977-10982.	5.5	50
61	Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. Journal of Catalysis, 2018, 368, 8-19.	3.1	49
62	Mixed Threefold and Fourfold Carbon Coordination in Compressed <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>CO<mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2008, 100, 163002.	2.9	48
63	Secondary Bonding in Organopnicogen Compounds. Comparison of the Structures of Octamethyl-1,1'-distibaferrocene and Octamethyl-1,1'-diarsaferrocene. Organometallics, 1994, 13, 4067-4071.	1.1	47
64	Dimerization Induced Deprotonation of Water on RuO $<$ sub $>$ 2 $<$ /sub $>$ (110). Journal of Physical Chemistry Letters, 2014, 5, 3445-3450.	2.1	47
65	Structural Rearrangement of Au–Pd Nanoparticles under Reaction Conditions: An <i>ab Initio</i> Molecular Dynamics Study. ACS Nano, 2017, 11, 1649-1658.	7.3	47
66	NWPEsSe: An Adaptive-Learning Global Optimization Algorithm for Nanosized Cluster Systems. Journal of Chemical Theory and Computation, 2020, 16, 3947-3958.	2.3	47
67	Steam reforming of hydrocarbons from biomass-derived syngas over MgAl2O4-supported transition metals and bimetallic IrNi catalysts. Applied Catalysis B: Environmental, 2016, 184, 142-152.	10.8	46
68	Norm-Conserving Pseudopotentials and Basis Sets To Explore Lanthanide Chemistry in Complex Environments. Journal of Chemical Theory and Computation, 2019, 15, 5987-5997.	2.3	46
69	Modeling protonated water networks in bacteriorhodopsin. Physical Chemistry Chemical Physics, 2004, 6, 1848-1859.	1.3	45
70	Theoretical Study of Syngas Hydrogenation to Methanol on the Polar Zn-Terminated ZnO(0001) Surface. Journal of Physical Chemistry C, 2012, 116, 15952-15961.	1.5	45
71	Toward control of surface reactions with a scanning tunneling microscope. Structure and dynamics of benzene desorption from a silicon surface. Journal of Chemical Physics, 2000, 113, 4412-4423.	1.2	44
72	Homogeneous Ni Catalysts for H2Oxidation and Production: An Assessment of Theoretical Methods, from Density Functional Theory to Post Hartreeâ^'Fock Correlated Wave-Function Theory. Journal of Physical Chemistry A, 2010, 114, 12716-12724.	1.1	44

#	Article	IF	CITATIONS
73	Structural Evidence of the Aromaticity of Borepins: A Comparison of 1-Chloroborepin and Tricarbonyl(1-chloroborepin)molybdenum. Angewandte Chemie International Edition in English, 1993, 32, 1065-1066.	4.4	41
74	Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO ₂ (110). ChemPhysChem, 2015, 16, 313-321.	1.0	41
75	Imaging Hindered Rotations of Alkoxy Species on TiO2(110). Journal of the American Chemical Society, 2009, 131, 17926-17932.	6.6	40
76	Growth of Ordered Ultrathin Tungsten Oxide Films on Pt(111). Journal of Physical Chemistry C, 2011, 115, 5773-5783.	1.5	40
77	Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angewandte Chemie - International Edition, 2021, 60, 290-296.	7.2	40
78	Phase Stability and Broken-Symmetry Transition of Elemental Lithium up to 140 GPa. ChemPhysChem, 2005, 6, 1703-1706.	1.0	39
79	Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts. ACS Catalysis, 2013, 3, 1133-1143.	5. 5	39
80	Fluctuations and Bonding in Lithium Clusters. Physical Review Letters, 1998, 80, 2574-2577.	2.9	38
81	Ab Initio-Based Kinetic Modeling for the Design of Molecular Catalysts: The Case of H ₂ Production Electrocatalysts. ACS Catalysis, 2015, 5, 5436-5452.	5.5	38
82	Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M = Mo, W) Nanoclusters. Journal of Physical Chemistry C, 2014, 118, 22620-22634.	1.5	37
83	Directed Hydrogen Bond Placement: Low Viscosity Amine Solvents for CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 7535-7542.	3.2	34
84	Single-Step Conversion of Ethanol to <i>n</i> -Butene over Ag-ZrO ₂ /SiO ₂ Catalysts. ACS Catalysis, 2020, 10, 10602-10613.	5.5	34
85	Progress and challenges in self-healing cementitious materials. Journal of Materials Science, 2021, 56, 201-230.	1.7	34
86	Surface Density Dependent Catalytic Activity of Single Palladium Atoms Supported on Ceria**. Angewandte Chemie - International Edition, 2021, 60, 22769-22775.	7.2	34
87	Static Structure and Dynamical Correlations in High PressureH2S. Physical Review Letters, 1999, 83, 2218-2221.	2.9	33
88	A new stable organic metal based on the BEDO-TTF donor and the doubly charged nitroprusside anion, (BEDO-TTF)4[Fe(CN)5NO]. Journal of Materials Chemistry, 2000, 10, 2017-2023.	6.7	33
89	Deprotonated Water Dimers: The Building Blocks of Segmented Water Chains on Rutile RuO ₂ (110). Journal of Physical Chemistry C, 2015, 119, 23552-23558.	1.5	33
90	Dynamic Acid/Base Equilibrium in Single Component Switchable Ionic Liquids and Consequences on Viscosity. Journal of Physical Chemistry Letters, 2016, 7, 1646-1652.	2.1	33

#	Article	IF	CITATIONS
91	Coordination Sphere of Lanthanide Aqua Ions Resolved with Ab Initio Molecular Dynamics and X-ray Absorption Spectroscopy. Inorganic Chemistry, 2021, 60, 3117-3130.	1.9	33
92	Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines. Inorganic Chemistry, 2015, 54, 4827-4839.	1.9	32
93	Reconciling Work Functions and Adsorption Enthalpies for Implicit Solvent Models: A Pt (111)/Water Interface Case Study. Journal of Chemical Theory and Computation, 2020, 16, 2703-2715.	2.3	32
94	The role of quantum and thermal fluctuations upon properties of lithium clusters. Journal of Chemical Physics, 1999, 111, 5091-5101.	1.2	31
95	Vacancy-Assisted Diffusion of Alkoxy Species on Rutile <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>110</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50="" 5<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2.9 567 Td (str</td><td>31 retchy="fals</td></mml:mo)></mml:math>	2.9 567 Td (str	31 retchy="fals
96	An In-Depth Correlation of the Perturbation of the Organicâ \in Inorganic Interface Topology, Electronic Structure, and Transport Properties within an Extended Series of 21 Metallic Pseudopolymorphs, \in 3-(BEDT-TTF)4 \in (guest)n \in [Re6Q6Cl8], (Q=S, Se). Chemistry - A European Journal, 2002, 8, 3884-3900.	1.7	30
97	The Origin of Regioselectivity in 2â€Butanol Dehydration on Solid Acid Catalysts. ChemCatChem, 2011, 3, 1557-1561.	1.8	30
98	Origin of the Metal-to-Insulator Transition in H0.33MoO3. Inorganic Chemistry, 1997, 36, 4627-4632.	1.9	29
99	<i>Ab initio</i> molecular dynamics with enhanced sampling in heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 12-37.	2.1	29
100	Inverse Temperature Transition of a Biomimetic Elastin Model: Reactive Flux Analysis of Folding/Unfolding and Its Coupling to Solvent Dielectric Relaxationâ€. Journal of Physical Chemistry B, 2006, 110, 3576-3587.	1.2	28
101	Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C–C bonds in methylcyclohexane over supported iridium particles. Journal of Catalysis, 2013, 297, 70-78.	3.1	28
102	Protonation of Ferrous Dinitrogen Complexes Containing a Diphosphine Ligand with a Pendent Amine. Inorganic Chemistry, 2013, 52, 4026-4039.	1.9	28
103	Preparation, Characterization, and Catalytic Properties of Tungsten Trioxide Cyclic Trimers on FeO(111)/Pt(111). Journal of Physical Chemistry C, 2012, 116, 908-916.	1.5	27
104	Lewis acidic titanium species: the synthesis, structure, bonding and molecular modelling considerations of the complexes Ti(NR2)3Cl (Râ€,=â€,Me, Et). Canadian Journal of Chemistry, 1991, 69, 357-362.	0.6	26
105	Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations. Scientific Reports, 2015, 5, 14857.	1.6	26
106	Reinventing Design Principles for Developing Lowâ€Viscosity Carbon Dioxideâ€Binding Organic Liquids for Flue Gas Clean Up. ChemSusChem, 2017, 10, 636-642.	3.6	26
107	Molecular Level Investigation of CH ₄ and CO ₂ Adsorption in Hydrated Calciumâ€"Montmorillonite. Journal of Physical Chemistry C, 2018, 122, 1125-1134.	1.5	26
108	Bonding and conformational aspects of thiolato-bridged early-late heterobimetallics. Organometallics, 1991, 10, 3399-3403.	1.1	24

#	Article	IF	CITATIONS
109	Binding of Formic Acid on Anatase TiO ₂ (101). Journal of Physical Chemistry C, 2020, 124, 20228-20239.	1.5	24
110	Atomic Origins of the Self-Healing Function in Cement–Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function in Cement–Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function in Cement–Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function in Cement–Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function in Cement–Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function in Cement—Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function in Cement—Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function in Cement—Polymer Composites. ACS Applied Materials & Long Representation of the Self-Healing Function o	4.0	23
111	Molecular Level Understanding of the Free Energy Landscape in Early Stages of Metal–Organic Framework Nucleation. Journal of the American Chemical Society, 2019, 141, 6073-6081.	6.6	23
112	Ab initio molecular dynamics assessment of thermodynamic and transport properties in (K,Li)Cl and (K,) Tj ETQo	10 0 0 grgBT	Overlock 10
113	The M(dddt)2 family of conducting complexes: [Ni(dddt)2]3(AuBr2)2, the first quasi-two-dimensional metal stable down to at least 1.3 K. Journal of Materials Chemistry, 1995, 5, 1633.	6.7	22
114	Dimerization of CO2 at High Pressure and Temperature. ChemPhysChem, 2005, 6, 1752-1756.	1.0	22
115	Insights into the physical and chemical properties of a cement-polymer composite developed for geothermal wellbore applications. Cement and Concrete Composites, 2019, 97, 279-287.	4.6	22
116	Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts. Journal of Catalysis, 2020, 386, 30-38.	3.1	22
117	Optimization of the main-group and late-transition-metal elemental structures: Gallium, boron, zinc, cadmium, and manganese. Physical Review B, 1992, 46, 12121-12131.	1.1	21
118	Activity of Cu–Al–Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites. Jacs Au, 2021, 1, 1412-1421.	3.6	21
119	Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO ₂ (110). ACS Nano, 2013, 7, 10414-10423.	7.3	20
120	Structure–property reduced order model for viscosity prediction in single-component CO ₂ -binding organic liquids. Green Chemistry, 2016, 18, 6004-6011.	4.6	20
121	Shedding light on black titania. Nature Materials, 2018, 17, 856-857.	13.3	19
122	Mesoscopic Structure Facilitates Rapid CO ₂ Transport and Reactivity in CO ₂ Capture Solvents. Journal of Physical Chemistry Letters, 2018, 9, 5765-5771.	2.1	19
123	Norm-Conserving Pseudopotentials and Basis Sets to Explore Actinide Chemistry in Complex Environments. Journal of Chemical Theory and Computation, 2021, 17, 3360-3371.	2.3	19
124	Actinide Molten Salts: A Machine-Learning Potential Molecular Dynamics Study. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53398-53408.	4.0	19
125	Understanding Metal–Organic Framework Nucleation from a Solution with Evolving Graphs. Journal of the American Chemical Society, 2022, 144, 11099-11109.	6.6	19
126	Alcohol Dehydration on Monooxo Wâ•O and Dioxo Oâ•Wâ•O Species. Journal of Physical Chemistry Letters, 2012, 3, 2168-2172.	2.1	18

#	Article	IF	Citations
127	Are Water-lean Solvent Systems Viable for Post-Combustion CO2 Capture?. Energy Procedia, 2017, 114, 756-763.	1.8	18
128	Electrochemically Tunable Protonâ€Coupled Electron Transfer in Pdâ€Catalyzed Benzaldehyde Hydrogenation. Angewandte Chemie, 2020, 132, 1517-1521.	1.6	18
129	Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO ₂ Nanocatalyst. ACS Catalysis, 2022, 12, 4455-4464.	5.5	17
130	A Combined Infrared Photodissociation and Theoretical Study of the Interaction of Ethanol with Small Gold Clusters. Journal of Physical Chemistry A, 2001, 105, 11197-11203.	1.1	16
131	Characterization of the Fermi surface of (BEDO-TTF)5[CsHg(SCN)4]2 by magnetoresistance measurements and tight-binding band structure calculations. Journal of Materials Chemistry, 2002, 12, 483-488.	6.7	16
132	OH Group Dynamics of 1,3-Propanediol on TiO2(110). Journal of Physical Chemistry Letters, 2012, 3, 3257-3263.	2.1	16
133	Impact of Nonadiabatic Charge Transfer on the Rate of Redox Chemistry of Carbon Oxides on Rutile TiO ₂ (110) Surface. ACS Catalysis, 2015, 5, 1764-1771.	5.5	16
134	Molecularâ€Level Overhaul of γâ€Aminopropyl Aminosilicone/Triethylene Glycol Postâ€Combustion CO ₂ â€Capture Solvents. ChemSusChem, 2020, 13, 3429-3438.	3.6	16
135	Electronic Structure of Layered Oxides Containing M2O7(M = V, Nb) Double Octahedral Slabs. Inorganic Chemistry, 1996, 35, 1179-1184.	1.9	15
136	Structure and Phase Stability of Binary Zintl-Phase Compounds: Lithium–Group 13 Intermetallics and Metal-Doped Group 14 Clathrate Compounds. Chemistry - A European Journal, 2002, 8, 2787.	1.7	15
137	Evaluating Transformational Solvent Systems for Post-combustion CO2 Separations. Energy Procedia, 2014, 63, 8144-8152.	1.8	15
138	Phase-Change Aminopyridines as Carbon Dioxide Capture Solvents. Industrial & Engineering Chemistry Research, 2017, 56, 7534-7540.	1.8	14
139	Formation of Supported Graphene Oxide: Evidence for Enolate Species. Journal of the American Chemical Society, 2018, 140, 5102-5109.	6.6	14
140	The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2 + Oxygenates. Topics in Catalysis, 2012, 55, 595-600.	1.3	13
141	Electro-reduction of organics on metal cathodes: A multiscale-modeling study of benzaldehyde on Au (111). Catalysis Today, 2020, 350, 39-46.	2.2	13
142	An evaluation of the rotational barrier about the Bî—,N bond of 1-aminoborepins. Journal of Organometallic Chemistry, 1994, 468, 21-23.	0.8	12
143	Heterogeneous catalysis in complex, condensed reaction media. Catalysis Today, 2017, 289, 231-236.	2.2	12
144	Structure and Stability of the Ionic Liquid Clusters [EMIM] $<$ sub $<$ i> $>$ i> $>$ ($<$ i> $>$ i) $<$ ($<$ i> $>$ i) $<$ ($<$ i) $>$ ($<$ i) ii) $<$ ($<$ i) ii) $<$ ($<$ i) ii) $<$ ($<$ i) iii) iii) iii) iii) iii) iii) iii)	2.1	12

#	Article	IF	CITATIONS
145	First-principle investigation on catalytic hydrogenation of benzaldehyde over Pt-group metals. Catalysis Today, 2022, 388-389, 208-215.	2.2	12
146	Selective acetylene hydrogenation over single metal atoms supported on Fe3O4(001): A first-principle study. Journal of Chemical Physics, 2020, 152, 154703.	1.2	12
147	Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angewandte Chemie, 2021, 133, 294-300.	1.6	12
148	A Combined Spectroelectrochemical and Computational Study of the Chemically Reversible 2-Electron Reduction of [Ru4($\hat{1}\frac{1}{4}$ -RC2R)2(CO)11] Clusters. Organometallics, 2005, 24, 1284-1292.	1.1	11
149	Dynamics, Stability, and Adsorption States of Water on Oxidized RuO ₂ (110). Journal of Physical Chemistry C, 2017, 121, 18505-18515.	1.5	11
150	How Collective Phenomena Impact CO ₂ Reactivity and Speciation in Different Media. Journal of Physical Chemistry A, 2020, 124, 3963-3975.	1.1	11
151	Energy Isosbestic Points in Third-Row Transition Metal Alloys. Chemistry - A European Journal, 2001, 7, 2652-2662.	1.7	10
152	Integrated Solvent Design for CO2 Capture and Viscosity Tuning. Energy Procedia, 2017, 114, 726-734.	1.8	10
153	Creating self-assembled arrays of mono-oxo (MoO $<$ sub>3 $<$ /sub>) $<$ sub>1 $<$ /sub> species on TiO $<$ sub>2 $<$ /sub> (101) via deposition and decomposition of (MoO $<$ sub>3 $<$ /sub>) $<$ sub>n $<$ /sub> oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
154	Conversion of Formic Acid on Single- and Nano-Crystalline Anatase TiO ₂ (101). Journal of Physical Chemistry C, 2021, 125, 7686-7700.	1.5	10
155	Structure and Chemical Bonding in K ₁₄ Cd ₉ Tl ₂₁ , a Compound Containing Both Isolated Tl ^{7â€} ₁₁ Clusters and ² _ [Cd ₉ Tl ^{7â€} ₁₀] Metallic Layers. Chemistry - A European Journal, 1997, 3, 799-806.	1.7	9
156	Light Makes a Surface Banana-Bond Split: Photodesorption of Molecular Hydrogen from RuO2(110). Journal of the American Chemical Society, 2016, 138, 8714-8717.	6.6	9
157	Polymer-cement composites with adhesion and re-adhesion (healing) to casing capability for geothermal wellbore applications. Cement and Concrete Composites, 2020, 107, 103490.	4.6	9
158	Synthesizing Clean Transportation Fuels from CO ₂ Will at Least Quintuple the Demand for Non-carbogenic Electricity in the United States. Energy & Samp; Fuels, 2020, 34, 15433-15442.	2.5	9
159	Graphene Oxide as a Pb(II) Separation Medium: Has Part of the Story Been Overlooked?. Jacs Au, 2021, 1, 766-776.	3.6	9
160	Mechanistic Understanding of Catalytic Conversion of Ethanol to 1-Butene over 2D-Pillared MFI Zeolite. Journal of Physical Chemistry C, 2020, 124, 28437-28447.	1.5	9
161	The interfacial compatibility between a potential CO2 separation membrane and capture solvents. Carbon Capture Science & Technology, 2022, 2, 100037.	4.9	9
162	Evaluation of the Role of Water in the H ₂ Bond Formation by Ni(II)-Based Electrocatalysts. Journal of Chemical Theory and Computation, 2013, 9, 3505-3514.	2.3	7

#	Article	IF	Citations
163	On the Role of Enthalpic and Entropic Contributions to the Conformational Free Energy Landscape of MILâ€101(Cr) Secondary Building Units. Advanced Theory and Simulations, 2020, 3, 2000092.	1.3	7
164	Understanding Adsorption of Organics on Pt(111) in the Aqueous Phase: Insights from DFT Based Implicit Solvent and Statistical Thermodynamics Models. Journal of Chemical Theory and Computation, 2022, 18, 1849-1861.	2.3	7
165	Comparison of μ2â€scaled Hückel theory and Hartree–Fock theory of boranes and carboranes. Journal of Chemical Physics, 1994, 101, 10753-10765.	1.2	6
166	An Effective Pseudopotential for Modeling Gold Surface Slabs for Ab Initio Simulations. ChemPhysChem, 2005, 6, 1756-1760.	1.0	6
167	Tuning the Charge and Hydrophobicity of Graphene Oxide Membranes by Functionalization with lonic Liquids at Epoxide Sites. ACS Applied Materials & Interfaces, 2022, 14, 19031-19042.	4.0	6
168	Atomic scale understanding of organic anion separations using ion-exchange resins. Journal of Membrane Science, 2021, 624, 118890.	4.1	5
169	Impact of functional groups on the electrocatalytic hydrogenation of aromatic carbonyls to alcohols. Catalysis Today, 2022, 397-399, 63-68.	2.2	5
170	Rationalization of Structures of Binary Alloys in a Real Space Atomic Level Perspective. Progress of Theoretical Physics Supplement, 2000, 138, 47-59.	0.2	3
171	Impact of Cr and Co on 99Tc retention in magnetite: A combined study of ab initio molecular dynamics and experiments. Journal of Hazardous Materials, 2020, 387, 121721.	6.5	3
172	Subtle changes in hydrogen bond orientation result in glassification of carbon capture solvents. Physical Chemistry Chemical Physics, 2020, 22, 19009-19021.	1.3	3
173	Binding and stability of MgO monomers on anatase TiO2(101). Journal of Chemical Physics, 2021, 154, 204703.	1.2	3
174	Trends in Homolytic Bond Dissociation Energies of Five- and Six-Coordinate Hydrides of Group 9 Transition Metals: Co, Rh, Ir. Journal of Physical Chemistry A, 2017, 121, 1993-2000.	1.1	2
175	Molecular Simulation of the Catalytic Regeneration of ⁿ BuLi through a Hydrometalation Route. Inorganic Chemistry, 2019, 58, 3033-3040.	1.9	2
176	The Nature of Hydrogen Adsorption on Platinum in the Aqueous Phase. Angewandte Chemie, 2019, 131, 3565-3570.	1.6	2
177	The role of sub-surface hydrogen on CO2 reduction and dynamics on Ni(110): An <i>ab initio</i> molecular dynamics study. Journal of Chemical Physics, 2021, 155, 044702.	1.2	2
178	Advanced Theory and Simulation to Guide the Development of CO ₂ Capture Solvents. ACS Omega, 2022, 7, 12453-12466.	1.6	2
179	Computer Modelling of the Structures, Stabilities and Thermoelectric Efficiency of Materials with Clathrate Structures. Key Engineering Materials, 2002, 227, 163-170.	0.4	1
180	Single-Atom Catalysis: An Analogy between Heterogeneous and Homogeneous Catalysts. ACS Symposium Series, 2020, , 1-15.	0.5	1

#	Article	IF	CITATIONS
181	AMPHIPHILIC WATERâ€LEAN CARBON CAPTURE SOLVENT WETTING BEHAVIOR VIA DECOMPOSITION BY STAINLESSâ€STEEL INTERFACES. ChemSusChem, 2021, 14, 5283-5292.	3.6	1
182	Computational and Experimental Study for the Denitrification of Biomass-Derived Hydrothermal Liquefaction Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 13406-13413.	3.2	1
183	Electronic structure of the \hat{l} ±-(BEDT-TTF)2MHg(XCN)4 (M = Tl, K, NH4; X = S, Se) molecular metals: on the 1D vs. 2D character of the charge carriers. Computational and Theoretical Chemistry, 1998, 424, 135-143.	1.5	O
184	Surface Density Dependent Catalytic Activity of Single Palladium Atoms Supported on Ceria**. Angewandte Chemie, 2021, 133, 22951.	1.6	0
185	Tailored Computational Approaches to Interrogate Heavy Element Chemistry and Structure in Condensed Phase. ACS Symposium Series, 0, , 219-245.	0.5	0