
## Anthony Vasileff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8112599/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly Selective Twoâ€Electron Electrocatalytic CO <sub>2</sub> Reduction on Singleâ€Atom Cu<br>Catalysts. Small Structures, 2021, 2, 2000058.                                                              | 6.9  | 93        |
| 2  | Role of oxygen-bound reaction intermediates in selective electrochemical CO <sub>2</sub> reduction.<br>Energy and Environmental Science, 2021, 14, 3912-3930.                                               | 15.6 | 74        |
| 3  | Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel<br>Surface Nitride. Advanced Materials, 2021, 33, e2007508.                                                   | 11.1 | 278       |
| 4  | The Controllable Reconstruction of Biâ€MOFs for Electrochemical CO <sub>2</sub> Reduction through Electrolyte and Potential Mediation. Angewandte Chemie, 2021, 133, 18326-18332.                           | 1.6  | 20        |
| 5  | The Controllable Reconstruction of Biâ€MOFs for Electrochemical CO <sub>2</sub> Reduction through<br>Electrolyte and Potential Mediation. Angewandte Chemie - International Edition, 2021, 60, 18178-18184. | 7.2  | 170       |
| 6  | Recent Progress of 3d Transition Metal Singleâ€Atom Catalysts for Electrochemical CO <sub>2</sub><br>Reduction. Advanced Materials Interfaces, 2021, 8, 2001904.                                            | 1.9  | 40        |
| 7  | The Ampoule Method: A Pathway towards Controllable Synthesis of Electrocatalysts for Water<br>Electrolysis. Chemistry - A European Journal, 2020, 26, 3898-3905.                                            | 1.7  | 5         |
| 8  | In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction. Advanced Energy<br>Materials, 2020, 10, 2001289.                                                                          | 10.2 | 184       |
| 9  | Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO <sub>2</sub> to CO. Chemical Communications, 2020, 56, 11275-11278.                               | 2.2  | 23        |
| 10 | Innentitelbild: Electrochemical Reduction of CO <sub>2</sub> to Ethane through Stabilization of an Ethoxy Intermediate (Angew. Chem. 44/2020). Angewandte Chemie, 2020, 132, 19530-19530.                   | 1.6  | 0         |
| 11 | Electrochemical Reduction of CO <sub>2</sub> to Ethane through Stabilization of an Ethoxy<br>Intermediate. Angewandte Chemie, 2020, 132, 19817-19821.                                                       | 1.6  | 33        |
| 12 | Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Energy, 2020, 71, 104601.                                                                                       | 8.2  | 116       |
| 13 | Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. Journal of Materials Chemistry A, 2020, 8, 15829-15833.                                           | 5.2  | 14        |
| 14 | Electrochemical Reduction of CO <sub>2</sub> to Ethane through Stabilization of an Ethoxy<br>Intermediate. Angewandte Chemie - International Edition, 2020, 59, 19649-19653.                                | 7.2  | 122       |
| 15 | Frontispiece: The Ampoule Method: A Pathway towards Controllable Synthesis of Electrocatalysts for<br>Water Electrolysis. Chemistry - A European Journal, 2020, 26, .                                       | 1.7  | 0         |
| 16 | Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO <sub>2</sub> electroreduction. Nanoscale Horizons, 2019, 4, 1411-1415.                                            | 4.1  | 21        |
| 17 | Efficient Surface Modulation of Single-Crystalline Na <sub>2</sub> Ti <sub>3</sub> O <sub>7</sub><br>Nanotube Arrays with Ti <sup>3+</sup> Self-Doping toward Superior Sodium Storage. , 2019, 1, 389-398.  |      | 24        |
| 18 | Selectivity Control for Electrochemical CO <sub>2</sub> Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catalysis, 2019, 9, 9411-9417.                                              | 5.5  | 172       |

ANTHONY VASILEFF

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Contemporaneous oxidation state manipulation to accelerate intermediate desorption for overall water electrolysis. Chemical Communications, 2019, 55, 8313-8316.                                                        | 2.2  | 7         |
| 20 | Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte<br>Chemie, 2019, 131, 12380-12385.                                                                                     | 1.6  | 23        |
| 21 | Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte<br>Chemie - International Edition, 2019, 58, 12252-12257.                                                              | 7.2  | 175       |
| 22 | Graphitic Carbon Nitride (gâ€C <sub>3</sub> N <sub>4</sub> )â€Derived Nâ€Rich Graphene with Tuneable<br>Interlayer Distance as a Highâ€Rate Anode for Sodiumâ€ion Batteries. Advanced Materials, 2019, 31, e1901261.    | 11.1 | 362       |
| 23 | Understanding the Roadmap for Electrochemical Reduction of CO <sub>2</sub> to Multi-Carbon<br>Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society,<br>2019, 141, 7646-7659. | 6.6  | 711       |
| 24 | Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry A, 2019, 7, 8117-8121.                                          | 5.2  | 150       |
| 25 | Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy<br>Letters, 2019, 4, 805-810.                                                                                            | 8.8  | 323       |
| 26 | Electronic and Structural Engineering of Carbonâ€Based Metalâ€Free Electrocatalysts for Water<br>Splitting. Advanced Materials, 2019, 31, e1803625.                                                                     | 11.1 | 229       |
| 27 | An Earthâ€Abundant Catalystâ€Based Seawater Photoelectrolysis System with 17.9% Solarâ€ŧoâ€Hydrogen<br>Efficiency. Advanced Materials, 2018, 30, e1707261.                                                              | 11.1 | 189       |
| 28 | Die Wasserstoffentwicklungsreaktion in alkalischer Lösung: Von der Theorie und Einkristallmodellen<br>zu praktischen Elektrokatalysatoren. Angewandte Chemie, 2018, 130, 7690-7702.                                     | 1.6  | 78        |
| 29 | Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 1198-1204.                                                                                                | 8.8  | 183       |
| 30 | NiO as a Bifunctional Promoter for RuO <sub>2</sub> toward Superior Overall Water Splitting.<br>Small, 2018, 14, e1704073.                                                                                              | 5.2  | 214       |
| 31 | Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.                                                                                                                    | 23.0 | 1,552     |
| 32 | The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to<br>Practical Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 7568-7579.                             | 7.2  | 1,018     |
| 33 | Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. Chemical Communications, 2018, 54, 463-466.                                         | 2.2  | 107       |
| 34 | Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia<br>(NH <sub>3</sub> ) under ambient conditions. Energy and Environmental Science, 2018, 11, 45-56.                    | 15.6 | 1,217     |
| 35 | Bronze alloys with tin surface sites for selective electrochemical reduction of CO <sub>2</sub> .<br>Chemical Communications, 2018, 54, 13965-13968.                                                                    | 2.2  | 43        |
| 36 | Single-Crystal Nitrogen-Rich Two-Dimensional Mo <sub>5</sub> N <sub>6</sub> Nanosheets for Efficient and Stable Seawater Splitting. ACS Nano, 2018, 12, 12761-12769.                                                    | 7.3  | 317       |

ANTHONY VASILEFF

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy, 2018, 53, 690-697.                                                                    | 8.2  | 175       |
| 38 | Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials<br>Chemistry A, 2018, 6, 21827-21846.                                                                                     | 5.2  | 103       |
| 39 | Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2<br>Electroreduction. CheM, 2018, 4, 1809-1831.                                                                               | 5.8  | 587       |
| 40 | Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catalysis, 2018, 8, 6707-6732.                                                                    | 5.5  | 320       |
| 41 | Molecule-Level g-C <sub>3</sub> N <sub>4</sub> Coordinated Transition Metals as a New Class of<br>Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139,<br>3336-3339. | 6.6  | 1,094     |
| 42 | Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small,<br>2017, 13, 1700191.                                                                                             | 5.2  | 290       |
| 43 | Design Strategies toward Advanced MOFâ€Derived Electrocatalysts for Energyâ€Conversion Reactions.<br>Advanced Energy Materials, 2017, 7, 1700518.                                                                     | 10.2 | 539       |
| 44 | 3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. Advanced Energy<br>Materials, 2017, 7, 1602928.                                                                                            | 10.2 | 120       |
| 45 | Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO <sub>2</sub> Reduction.<br>Small Methods, 2017, 1, 1600006.                                                                                 | 4.6  | 112       |
| 46 | Identification of pH-dependent synergy on Ru/MoS <sub>2</sub> interface: a comparison of alkaline<br>and acidic hydrogen evolution. Nanoscale, 2017, 9, 16616-16621.                                                  | 2.8  | 120       |
| 47 | Hierarchical 1T-MoS <sub>2</sub> nanotubular structures for enhanced supercapacitive performance.<br>Journal of Materials Chemistry A, 2017, 5, 23704-23711.                                                          | 5.2  | 61        |
| 48 | A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance<br>Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1702524.                                        | 7.8  | 340       |
| 49 | Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbonâ€Based Catalysts for<br>the Electrochemical Reduction of CO <sub>2</sub> . Advanced Energy Materials, 2017, 7, 1700759.                    | 10.2 | 327       |
| 50 | S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy, 2017, 40, 264-273.                                                                         | 8.2  | 335       |
| 51 | Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. ACS<br>Nano, 2016, 10, 8738-8745.                                                                                            | 7.3  | 376       |
| 52 | Size Fractionation of Twoâ€Dimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards<br>Superior Urea Electrocatalytic Conversion. Angewandte Chemie, 2016, 128, 3868-3872.                                  | 1.6  | 47        |
| 53 | Size Fractionation of Twoâ€Dimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards<br>Superior Urea Electrocatalytic Conversion. Angewandte Chemie - International Edition, 2016, 55,<br>3804-3808.        | 7.2  | 288       |
| 54 | Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate<br>nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horizons, 2016, 1,<br>41-44.           | 4.1  | 54        |