Anthony Vasileff

List of Publications by Citations

Source: https://exaly.com/author-pdf/8112599/anthony-vasileff-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54	9,143	39	57
papers	citations	h-index	g-index
57	11,369 ext. citations	14.9	7.01
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
54	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. <i>Chemical Reviews</i> , 2018 , 118, 6337-6408	8 68.1	1057
53	Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. <i>Energy and Environmental Science</i> , 2018 , 11, 45-56	35.4	887
52	Molecule-Level g-CN Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3336-3339	16.4	816
51	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7568-7579	16.4	659
50	Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. <i>Advanced Energy Materials</i> , 2017 , 7, 1700518	21.8	406
49	Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. <i>CheM</i> , 2018 , 4, 1809-1831	16.2	372
48	Understanding the Roadmap for Electrochemical Reduction of CO to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7646-76	5 ^{56.4}	371
47	Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. <i>ACS Nano</i> , 2016 , 10, 8738-45	16.7	310
46	A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance Lithium Bulfur Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1702524	15.6	265
45	S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. <i>Nano Energy</i> , 2017 , 40, 264-273	17.1	258
44	Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO2. <i>Advanced Energy Materials</i> , 2017 , 7, 1700759	21.8	250
43	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. <i>ACS Catalysis</i> , 2018 , 8, 6707-6732	13.1	240
42	Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion. <i>Small</i> , 2017 , 13, 1700191	11	235
41	Graphitic Carbon Nitride (g-C N)-Derived N-Rich Graphene with Tuneable Interlayer Distance as a High-Rate Anode for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901261	24	232
40	Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3804-8	16.4	225
39	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. <i>ACS Energy Letters</i> , 2019 , 4, 805-810	20.1	188
38	Single-Crystal Nitrogen-Rich Two-Dimensional MoN Nanosheets for Efficient and Stable Seawater Splitting. <i>ACS Nano</i> , 2018 , 12, 12761-12769	16.7	171

(2020-2019)

37	Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting. <i>Advanced Materials</i> , 2019 , 31, e1803625	24	163
36	NiO as a Bifunctional Promoter for RuO toward Superior Overall Water Splitting. <i>Small</i> , 2018 , 14, e170	407/3	147
35	Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12252-12257	16.4	127
34	Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. <i>Nano Energy</i> , 2018 , 53, 690-697	17.1	126
33	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. <i>ACS Energy Letters</i> , 2018 , 3, 1198-1204	20.1	124
32	3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. <i>Advanced Energy Materials</i> , 2017 , 7, 1602928	21.8	111
31	An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency. <i>Advanced Materials</i> , 2018 , 30, e1707261	24	110
30	Selectivity Control for Electrochemical CO2 Reduction by Charge Redistribution on the Surface of Copper Alloys. <i>ACS Catalysis</i> , 2019 , 9, 9411-9417	13.1	106
29	Identification of pH-dependent synergy on Ru/MoS interface: a comparison of alkaline and acidic hydrogen evolution. <i>Nanoscale</i> , 2017 , 9, 16616-16621	7.7	95
28	Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO2 Reduction. <i>Small Methods</i> , 2017 , 1, 1600006	12.8	92
27	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. <i>Chemical Communications</i> , 2018 , 54, 463-466	5.8	91
26	Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8117-8121	13	86
25	In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction. <i>Advanced Energy Materials</i> , 2020 , 10, 2001289	21.8	81
24	Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. <i>Advanced Materials</i> , 2021 , 33, e2007508	24	81
23	Polydopamine-inspired nanomaterials for energy conversion and storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21827-21846	13	74
22	Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. <i>Nano Energy</i> , 2020 , 71, 104601	17.1	65
21	Die Wasserstoffentwicklungsreaktion in alkalischer L\u00edung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. <i>Angewandte Chemie</i> , 2018 , 130, 7690-7702	3.6	64
20	Electrochemical Reduction of CO to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie - International Edition, 2020, 59, 19649-19653	16.4	61

19	Hierarchical 1T-MoS2 nanotubular structures for enhanced supercapacitive performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23704-23711	13	47
18	Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. <i>Nanoscale Horizons</i> , 2016 , 1, 41-44	10.8	46
17	Highly Selective Two-Electron Electrocatalytic CO2 Reduction on Single-Atom Cu Catalysts. <i>Small Structures</i> , 2021 , 2, 2000058	8.7	44
16	Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. <i>Angewandte Chemie</i> , 2016 , 128, 3868-3872	3.6	42
15	Bronze alloys with tin surface sites for selective electrochemical reduction of CO. <i>Chemical Communications</i> , 2018 , 54, 13965-13968	5.8	37
14	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18178-18184	16.4	35
13	Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction. <i>Energy and Environmental Science</i> , 2021 , 14, 3912-3930	35.4	27
12	Recent Progress of 3d Transition Metal Single-Atom Catalysts for Electrochemical CO2 Reduction. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001904	4.6	22
11	Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 12380-12385	3.6	19
10	Efficient Surface Modulation of Single-Crystalline Na2Ti3O7 Nanotube Arrays with Ti3+ Self-Doping toward Superior Sodium Storage 2019 , 1, 389-398		15
9	Electrochemical Reduction of CO2 to Ethane through Stabilization of an Ethoxy Intermediate. <i>Angewandte Chemie</i> , 2020 , 132, 19817-19821	3.6	14
8	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO2 electroreduction. <i>Nanoscale Horizons</i> , 2019 , 4, 1411-1415	10.8	14
7	Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO to CO. <i>Chemical Communications</i> , 2020 , 56, 11275-11278	5.8	13
6	Contemporaneous oxidation state manipulation to accelerate intermediate desorption for overall water electrolysis. <i>Chemical Communications</i> , 2019 , 55, 8313-8316	5.8	7
5	Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15829-15833	13	7
4	The Ampoule Method: A Pathway towards Controllable Synthesis of Electrocatalysts for Water Electrolysis. <i>Chemistry - A European Journal</i> , 2019 , 26, 3898	4.8	5
3	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO2 Reduction through Electrolyte and Potential Mediation. <i>Angewandte Chemie</i> , 2021 , 133, 18326-18332	3.6	1
2	Carbon-Based Electrochemical Oxygen Reduction and Hydrogen Evolution Catalysts 2018 , 403-455		1

Innentitelbild: Electrochemical Reduction of CO2 to Ethane through Stabilization of an Ethoxy Intermediate (Angew. Chem. 44/2020). *Angewandte Chemie*, **2020**, 132, 19530-19530

3.6