Kim L R Brouwer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8112463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Considerations for Physiologically Based Modeling in Liver Disease: From Nonalcoholic Fatty Liver (NAFL) to Nonalcoholic Steatohepatitis (NASH). Clinical Pharmacology and Therapeutics, 2023, 113, 275-297.	2.3	11
2	Novel Bile Acid-Dependent Mechanisms of Hepatotoxicity Associated with Tyrosine Kinase Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 114-125.	1.3	13
3	Lipidomics profiles in hepatocytes from nonalcoholic steatohepatitis patients differ markedly from <i>in vitro</i> â€induced steatotic hepatocytes. FEBS Letters, 2022, , .	1.3	1
4	Regulation of Drug Transport Proteins—From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2022, 112, 461-484.	2.3	26
5	Clinical Relevance of Hepatic and Renal Pâ€gp/ <scp>BCRP</scp> Inhibition of Drugs: An International Transporter Consortium Perspective. Clinical Pharmacology and Therapeutics, 2022, 112, 573-592.	2.3	15
6	Intestinal Pâ€gp and Putative Hepatic OATP1B Induction: International Transporter Consortium Perspective on Drug Development Implications. Clinical Pharmacology and Therapeutics, 2021, 109, 55-64.	2.3	38
7	Quantitative Systems Toxicology Modeling Predicts that Reduced Biliary Efflux Contributes to Tolvaptan Hepatotoxicity. Clinical Pharmacology and Therapeutics, 2021, 109, 433-442.	2.3	13
8	Endogenous Coproporphyrin I and III are Altered in Multidrug Resistance-Associated Protein 2-Deficient (TRâ^') Rats. Journal of Pharmaceutical Sciences, 2021, 110, 404-411.	1.6	7
9	Pregnancy-Related Hormones Increase Nifedipine Metabolism in Human Hepatocytes by Inducing CYP3A4 Expression. Journal of Pharmaceutical Sciences, 2021, 110, 412-421.	1.6	14
10	Physiologicallyâ€Based Pharmacokinetic Model of Morphine and Morphineâ€3â€Clucuronide in Nonalcoholic Steatohepatitis. Clinical Pharmacology and Therapeutics, 2021, 109, 676-687.	2.3	17
11	Quantitative Analysis of Intracellular Drug Concentrations in Hepatocytes. Methods in Pharmacology and Toxicology, 2021, , 97-125.	0.1	0
12	E-Cigarette Flavoring Chemicals Induce Cytotoxicity in HepG2 Cells. ACS Omega, 2021, 6, 6708-6713.	1.6	17
13	Pregnancy-Related Hormones Increase UGT1A1-Mediated Labetalol Metabolism in Human Hepatocytes. Frontiers in Pharmacology, 2021, 12, 655320.	1.6	16
14	Analytical and Omics-Based Advances in the Study of Drug-Induced Liver Injury. Toxicological Sciences, 2021, 183, 1-13.	1.4	16
15	Moving Towards FAIR Data Practices in Pharmacy Education. American Journal of Pharmaceutical Education, 2021, , 8670.	0.7	Ο
16	Identification of Key Amino Acids that Impact Organic Solute Transporter <i>α</i> / <i>β</i> (OSTα/β). Molecular Pharmacology, 2021, 100, 599-608.	1.0	0
17	New pharmacokinetic parameters of imaging substrates quantified from rat liver compartments. Drug Metabolism and Disposition, 2021, , DMD-AR-2021-000546.	1.7	2
18	Clinical Pharmacology Education – The Decade Ahead. Clinical Pharmacology and Therapeutics, 2020, 107, 37-39.	2.3	10

#	Article	IF	CITATIONS
19	Mechanistic Modeling of the Hepatic Disposition of Estradiol-17 <i>β</i> -Glucuronide in Sandwich-Cultured Human Hepatocytes. Drug Metabolism and Disposition, 2020, 48, 116-122.	1.7	3
20	Intestinal Permeability and Oral Absorption of Selected Drugs Are Reduced in a Mouse Model of Familial Alzheimer's Disease. Molecular Pharmaceutics, 2020, 17, 1527-1537.	2.3	10
21	Nanoparticle Drug Delivery Can Reduce the Hepatotoxicity of Therapeutic Cargo. Small, 2020, 16, 1906360.	5.2	16
22	Novel insights into the organic solute transporter alpha/beta, $\text{OST}\hat{1}\pm/\hat{1}^2$: From the bench to the bedside. , 2020, 211, 107542.		38
23	Role of Organic Solute Transporter Alpha/Beta in Hepatotoxic Bile Acid Transport and Drug Interactions. Toxicological Sciences, 2020, 176, 34-45.	1.4	12
24	Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 261-268.	1.3	2
25	Novel Mechanisms of Valproate Hepatotoxicity: Impaired Mrp2 Trafficking and Hepatocyte Depolarization. Toxicological Sciences, 2019, 171, 431-442.	1.4	9
26	Impact of reduced Pâ€glycoprotein function on digoxin concentrations in patients with dementia. British Journal of Clinical Pharmacology, 2019, 85, 2351-2359.	1.1	3
27	Protein expression and function of organic anion transporters in short-term and long-term cultures of Huh7 human hepatoma cells. European Journal of Pharmaceutical Sciences, 2019, 130, 186-195.	1.9	13
28	Altered Expression and Function of Hepatic Transporters in a Rodent Model of Polycystic Kidney Disease. Drug Metabolism and Disposition, 2019, 47, 899-906.	1.7	14
29	Cefazolin pharmacokinetics in premature infants. Journal of Perinatology, 2019, 39, 1213-1218.	0.9	2
30	Increased Expression of Renal Drug Transporters in a Mouse Model of Familial Alzheimer's Disease. Journal of Pharmaceutical Sciences, 2019, 108, 2484-2489.	1.6	13
31	Optimization of Canalicular ABC Transporter Function in HuH-7 Cells by Modification of Culture Conditions. Drug Metabolism and Disposition, 2019, 47, 1222-1230.	1.7	6
32	Probe Cocktail to Assess Transporter Function in Sandwich-Cultured Human Hepatocytes. Journal of Pharmacy and Pharmaceutical Sciences, 2019, 22, 567-575.	0.9	1
33	Novel in Vitro Method Reveals Drugs That Inhibit Organic Solute Transporter Alpha/Beta (OSTα/β). Molecular Pharmaceutics, 2019, 16, 238-246.	2.3	11
34	A Challenge for Clinical Pharmacologists: How Can We Measure Scientific Impact of Publications in Drug Development and in Regulatory Decision Making?. Clinical Pharmacology and Therapeutics, 2019, 105, 1071-1073.	2.3	0
35	Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metabolism and Disposition, 2019, 47, 283-294.	1.7	19
36	Effect of a Common Genetic Variant (p.V444A) in the Bile Salt Export Pump on the Inhibition of Bile Acid Transport by Cholestatic Medications. Molecular Pharmaceutics, 2019, 16, 1406-1411.	2.3	9

#	Article	IF	CITATIONS
37	Altered Hepatobiliary Disposition of Tolvaptan and Selected Tolvaptan Metabolites in a Rodent Model of Polycystic Kidney Disease. Drug Metabolism and Disposition, 2019, 47, 155-163.	1.7	11
38	Farnesoid X Receptor Agonists Obeticholic Acid and Chenodeoxycholic Acid Increase Bile Acid Efflux in Sandwich-Cultured Human Hepatocytes: Functional Evidence and Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 413-421.	1.3	34
39	Pharmacokinetic/Pharmacodynamic Model of CW002, an Investigational Intermediate Neuromuscular Blocking Agent, in Healthy Volunteers. Anesthesiology, 2018, 128, 1107-1116.	1.3	3
40	Transporterâ€Mediated Alterations in Patients With NASH Increase Systemic and Hepatic Exposure to an OATP and MRP2 Substrate. Clinical Pharmacology and Therapeutics, 2018, 104, 749-756.	2.3	41
41	Bile Acids as Potential Biomarkers to Assess Liver Impairment in Polycystic Kidney Disease. International Journal of Toxicology, 2018, 37, 144-154.	0.6	15
42	In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicology in Vitro, 2018, 47, 213-227.	1,1	162
43	Diseaseâ€Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2018, 104, 900-915.	2.3	91
44	Organic solute transporter OSTα/β is overexpressed in nonalcoholic steatohepatitis and modulated by drugs associated with liver injury. American Journal of Physiology - Renal Physiology, 2018, 314, G597-G609.	1.6	34
45	Advancing Predictions of Tissue and Intracellular Drug Concentrations Using <i>InÂVitro</i> , Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clinical Pharmacology and Therapeutics, 2018, 104, 865-889.	2.3	92
46	Altered Expression of Small Intestinal Drug Transporters and Hepatic Metabolic Enzymes in a Mouse Model of Familial Alzheimer's Disease. Molecular Pharmaceutics, 2018, 15, 4073-4083.	2.3	23
47	Physiologically Based Pharmacokinetic Approach to Determine Dosing on Extracorporeal Life Support: Fluconazole in Children on <scp>ECMO</scp> . CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 629-637.	1.3	29
48	Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clinical Pharmacology and Therapeutics, 2018, 104, 916-932.	2.3	80
49	A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function. PLoS ONE, 2018, 13, e0197213.	1.1	16
50	Analysis of human C24 bile acids metabolome in serum and urine based on enzyme digestion of conjugated bile acids and LC-MS determination of unconjugated bile acids. Analytical and Bioanalytical Chemistry, 2018, 410, 5287-5300.	1.9	28
51	Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay. European Journal of Pharmaceutical Sciences, 2017, 103, 52-59.	1.9	17
52	Effect of Liver Disease on Hepatic Transporter Expression and Function. Journal of Pharmaceutical Sciences, 2017, 106, 2282-2294.	1.6	86
53	Prediction of Hepatic Efflux Transporter-Mediated Drug Interactions: When Is it Optimal to Measure Intracellular Unbound Fraction ofAInhibitors?. Journal of Pharmaceutical Sciences, 2017, 106, 2401-2406.	1.6	5
54	Application of a Mechanistic Model to Evaluate Putative Mechanisms of Tolvaptan Drug-Induced Liver Injury and Identify Patient Susceptibility Factors. Toxicological Sciences, 2017, 155, 61-74.	1.4	71

#	Article	IF	CITATIONS
55	Precision Dosing: Public Health Need, Proposed Framework, and Anticipated Impact. Clinical and Translational Science, 2017, 10, 443-454.	1.5	55
56	Antifungal Extraction by the Extracorporeal Membrane Oxygenation Circuit. Journal of Extra-Corporeal Technology, 2017, 49, 150-159.	0.2	14
57	Characterization of the Cytochrome P450 epoxyeicosanoid pathway in non-alcoholic steatohepatitis. Prostaglandins and Other Lipid Mediators, 2016, 125, 19-29.	1.0	22
58	Pharmacokinetics and Safety of Micafungin in Infants Supported With Extracorporeal Membrane Oxygenation. Pediatric Infectious Disease Journal, 2016, 35, 1204-1210.	1.1	34
59	Key Role for the 12-Hydroxy Group in the Negative Ion Fragmentation of Unconjugated C24 Bile Acids. Analytical Chemistry, 2016, 88, 7041-7048.	3.2	49
60	Prediction of Altered Bile Acid Disposition Due to Inhibition of Multiple Transporters: An Integrated Approach Using Sandwich-Cultured Hepatocytes, Mechanistic Modeling, and Simulation. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 324-333.	1.3	19
61	Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. Journal of Pharmaceutical Sciences, 2016, 105, 443-459.	1.6	62
62	Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury?. Toxicological Sciences, 2016, 149, 237-250.	1.4	37
63	Toward Predicting Drug-Induced Liver Injury: Parallel Computational Approaches to Identify Multidrug Resistance Protein 4 and Bile Salt Export Pump Inhibitors. Drug Metabolism and Disposition, 2015, 43, 725-734.	1.7	37
64	Species Differences in Hepatobiliary Disposition of Taurocholic Acid in Human and Rat Sandwich-Cultured Hepatocytes: Implications for Drug-Induced Liver Injury. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 415-423.	1.3	51
65	Fluconazole Population Pharmacokinetics and Dosing for Prevention and Treatment of Invasive Candidiasis in Children Supported with Extracorporeal Membrane Oxygenation. Antimicrobial Agents and Chemotherapy, 2015, 59, 3935-3943.	1.4	49
66	Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Digestive Diseases and Sciences, 2015, 60, 3318-3328.	1.1	251
67	Identification of Hepatic Phospholipidosis Inducers in Sandwich-Cultured Rat Hepatocytes, a Physiologically Relevant Model, Reveals Altered Basolateral Uptake and Biliary Excretion of Anionic Probe Substrates. Toxicological Sciences, 2014, 139, 99-107.	1.4	10
68	Hepatocellular Exposure of Troglitazone Metabolites in Rat Sandwich-Cultured Hepatocytes Lacking Bcrp and Mrp2: Interplay between Formation and Excretion. Drug Metabolism and Disposition, 2014, 42, 1219-1226.	1.7	7
69	Novel Mechanism of Impaired Function of Organic Anion-Transporting Polypeptide 1B3 in Human Hepatocytes: Post-Translational Regulation of OATP1B3 by Protein Kinase C Activation. Drug Metabolism and Disposition, 2014, 42, 1964-1970.	1.7	42
70	Exploring BSEP inhibition-mediated toxicity with a mechanistic model of drug-induced liver injury. Frontiers in Pharmacology, 2014, 5, 240.	1.6	74
71	In Vivo Alterations in Drug Metabolism and Transport Pathways in Patients with Chronic Kidney Diseases. Pharmacotherapy, 2014, 34, 114-122.	1.2	26
72	Medication use and medical comorbidity in patients with chronic hepatitis C from a US commercial claims database. European Journal of Gastroenterology and Hepatology, 2014, 26, 1073-1082.	0.8	46

#	Article	IF	CITATIONS
73	Risk Factors for Development of Cholestatic Drug-Induced Liver Injury: Inhibition of Hepatic Basolateral Bile Acid Transporters Multidrug Resistance-Associated Proteins 3 and 4. Drug Metabolism and Disposition, 2014, 42, 665-674.	1.7	140
74	Role of Multidrug Resistance–Associated Protein 4 in the Basolateral Efflux of Hepatically Derived Enalaprilat. Drug Metabolism and Disposition, 2014, 42, 1567-1574.	1.7	23
75	An Experimental Approach To Evaluate the Impact of Impaired Transport Function on Hepatobiliary Drug Disposition Using Mrp2-Deficient TR [–] Rat Sandwich-Cultured Hepatocytes in Combination with Bcrp Knockdown. Molecular Pharmaceutics, 2014, 11, 766-775.	2.3	9
76	Role of Hepatic Efflux Transporters in Regulating Systemic and Hepatocyte Exposure to Xenobiotics. Annual Review of Pharmacology and Toxicology, 2014, 54, 509-535.	4.2	57
77	An updated review on drug-induced cholestasis: Mechanisms and investigation of physicochemical properties and pharmacokinetic parameters. Journal of Pharmaceutical Sciences, 2013, 102, 3037-3057.	1.6	95
78	Sorafenib Hepatobiliary Disposition: Mechanisms of Hepatic Uptake and Disposition of Generated Metabolites. Drug Metabolism and Disposition, 2013, 41, 1179-1186.	1.7	51
79	Determination of Intracellular Unbound Concentrations and Subcellular Localization of Drugs in Rat Sandwich-Cultured Hepatocytes Compared with Liver Tissue. Drug Metabolism and Disposition, 2013, 41, 1949-1956.	1.7	32
80	Interaction of Silymarin Flavonolignans with Organic Anion-Transporting Polypeptides. Drug Metabolism and Disposition, 2013, 41, 958-965.	1.7	44
81	Hepatic Basolateral Efflux Contributes Significantly to Rosuvastatin Disposition II: Characterization of Hepatic Elimination by Basolateral, Biliary, and Metabolic Clearance Pathways in Rat Isolated Perfused Liver. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 737-745.	1.3	31
82	Hepatic Basolateral Efflux Contributes Significantly to Rosuvastatin Disposition I: Characterization of Basolateral Versus Biliary Clearance Using a Novel Protocol in Sandwich-Cultured Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 727-736.	1.3	89
83	Organic Cation Transporter 1 (OCT1/mOct1) Is Localized in the Apical Membrane of Caco-2 Cell Monolayers and Enterocytes. Molecular Pharmacology, 2013, 84, 182-189.	1.0	93
84	Relative bioavailability of tolvaptan administered via nasogastric tube and tolvaptan tablets swallowed intact. American Journal of Health-System Pharmacy, 2013, 70, 1230-1237.	0.5	6
85	Combination Lopinavir and Ritonavir Alter Exogenous and Endogenous Bile Acid Disposition in Sandwich-Cultured Rat Hepatocytes. Drug Metabolism and Disposition, 2013, 41, 188-196.	1.7	14
86	Analysis of Hepatic Transport Proteins. AAPS Advances in the Pharmaceutical Sciences Series, 2013, , 201-233.	0.2	1
87	A Semiphysiologically Based Pharmacokinetic Modeling Approach to Predict the Dose-Exposure Relationship of an Antiparasitic Prodrug/Active Metabolite Pair. Drug Metabolism and Disposition, 2012, 40, 6-17.	1.7	21
88	Cyclophosphamide and 4â€hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis. British Journal of Clinical Pharmacology, 2012, 74, 445-455.	1.1	48
89	Pharmacokinetics and Safety of Fluconazole in Young Infants Supported With Extracorporeal Membrane Oxygenation. Pediatric Infectious Disease Journal, 2012, 31, 1042-1047.	1.1	47
90	Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes. Toxicology and Applied Pharmacology, 2012, 261, 1-9.	1.3	44

#	Article	IF	CITATIONS
91	Influence of Drug Transport Proteins on the Pharmacokinetics and Drug Interactions of Hiv Protease Inhibitors. Journal of Pharmaceutical Sciences, 2011, 100, 3636-3654.	1.6	55
92	Mechanisms Underlying Differences in Systemic Exposure of Structurally Similar Active Metabolites: Comparison of Two Preclinical Hepatic Models. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 503-512.	1.3	22
93	Decreased Hepatic Breast Cancer Resistance Protein Expression and Function in Multidrug Resistance-Associated Protein 2-Deficient (TR ^{â^}) Rats. Drug Metabolism and Disposition, 2011, 39, 441-447.	1.7	20
94	Differential Disposition of Chenodeoxycholic Acid versus Taurocholic Acid in Response to Acute Troglitazone Exposure in Rat Hepatocytes. Toxicological Sciences, 2011, 120, 371-380.	1.4	22
95	Evaluation of 99mTechnetium-Mebrofenin and 99mTechnetium-Sestamibi as Specific Probes for Hepatic Transport Protein Function in Rat and Human Hepatocytes. Pharmaceutical Research, 2010, 27, 1987-1998.	1.7	29
96	Plasma Bile Acid Concentrations in Patients with Human Immunodeficiency Virus Infection Receiving Protease Inhibitor Therapy: Possible Implications for Hepatotoxicity. Pharmacotherapy, 2010, 30, 17-24.	1.2	17
97	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	21.5	2,886
98	Hepatobiliary Disposition of Troglitazone and Metabolites in Rat and Human Sandwich-Cultured Hepatocytes: Use of Monte Carlo Simulations to Assess the Impact of Changes in Biliary Excretion on Troglitazone Sulfate Accumulation. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 26-34.	1.3	49
99	In Vitro Investigation of the Hepatobiliary Disposition Mechanisms of the Antifungal Agent Micafungin in Humans and Rats. Drug Metabolism and Disposition, 2010, 38, 1848-1856.	1.7	55
100	Sulindac and Its Metabolites Inhibit Multiple Transport Proteins in Rat and Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 410-418.	1.3	26
101	Sandwich-cultured hepatocytes: an <i>in vitro</i> model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metabolism Reviews, 2010, 42, 446-471.	1.5	320
102	Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport. Toxicology in Vitro, 2010, 24, 297-309.	1.1	39
103	Influence of Seeding Density and Extracellular Matrix on Bile Acid Transport and Mrp4 Expression in Sandwich-Cultured Mouse Hepatocytes. Molecular Pharmaceutics, 2010, 7, 491-500.	2.3	40
104	Absorption Models to Examine Bioavailability and Drug–Drug Interactions in Humans. , 2010, , 343-370.		1
105	Relationship between Drug/Metabolite Exposure and Impairment of Excretory Transport Function. Drug Metabolism and Disposition, 2009, 37, 386-390.	1.7	58
106	Sex-Dependent Disposition of Acetaminophen Sulfate and Glucuronide in the in Situ Perfused Mouse Liver. Drug Metabolism and Disposition, 2009, 37, 1916-1921.	1.7	25
107	Use of Sandwich-Cultured Human Hepatocytes to Predict Biliary Clearance of Angiotensin II Receptor Blockers and HMG-CoA Reductase Inhibitors. Drug Metabolism and Disposition, 2009, 37, 447-452.	1.7	70
108	Integration of Preclinical and Clinical Data with Pharmacokinetic Modeling and Simulation to Evaluate Fexofenadine as a Probe for Hepatobiliary Transport Function. Pharmaceutical Research, 2009, 26, 1942-1951.	1.7	14

7

#	Article	IF	CITATIONS
109	Knocking Down Breast Cancer Resistance Protein (Bcrp) by Adenoviral Vector-Mediated RNA Interference (RNAi) in Sandwich-Cultured Rat Hepatocytes: A Novel Tool To Assess the Contribution of Bcrp to Drug Biliary Excretion. Molecular Pharmaceutics, 2009, 6, 134-143.	2.3	37
110	Use of Tc-99m Mebrofenin as a Clinical Probe to Assess Altered Hepatobiliary Transport: Integration of In Vitro, Pharmacokinetic Modeling, and Simulation Studies. Pharmaceutical Research, 2008, 25, 1851-1860.	1.7	86
111	Modulation of trabectedin (ET-743) hepatobiliary disposition by multidrug resistance-associated proteins (Mrps) may prevent hepatotoxicity. Toxicology and Applied Pharmacology, 2008, 228, 17-23.	1.3	27
112	Apparent Differences in Mechanisms of Harmol Sulfate Biliary Excretion in Mice and Rats. Drug Metabolism and Disposition, 2008, 36, 2156-2158.	1.7	6
113	Multidrug Resistance-Associated Protein 2 Is Primarily Responsible for the Biliary Excretion of Fexofenadine in Mice. Drug Metabolism and Disposition, 2008, 36, 61-64.	1.7	45
114	Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in Freshly Isolated Rat Hepatocytes. Drug Metabolism and Disposition, 2008, 36, 198-202.	1.7	104
115	Effect of Albumin on the Biliary Clearance of Compounds in Sandwich-Cultured Rat Hepatocytes. Drug Metabolism and Disposition, 2008, 36, 2086-2092.	1.7	15
116	In Vitro Biliary Clearance of Angiotensin II Receptor Blockers and 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase Inhibitors in Sandwich-Cultured Rat Hepatocytes: Comparison with in Vivo Biliary Clearance. Journal of Pharmacology and Experimental Therapeutics, 2008. 326. 983-990.	1.3	72
117	Impact of Basolateral Multidrug Resistance-Associated Protein (Mrp) 3 and Mrp4 on the Hepatobiliary Disposition of Fexofenadine in Perfused Mouse Livers. Drug Metabolism and Disposition, 2008, 36, 911-915.	1.7	40
118	Hepatic Metabolism and Biliary Excretion of Silymarin Flavonolignans in Isolated Perfused Rat Livers: Role of Multidrug Resistance-Associated Protein 2 (Abcc2). Drug Metabolism and Disposition, 2008, 36, 2219-2226.	1.7	48
119	In Vitro and in Vivo Determination of Piperacillin Metabolism in Humans. Drug Metabolism and Disposition, 2007, 35, 345-349.	1.7	13
120	Effect of DPC 333 [(2R)-2-{(3R)-3-Amino-3-[4-(2-methylquinolin-4-ylmethoxy)phenyl]-2-oxopyrrolidin-1-yl}-N-hydroxy-4-methylpental a Human Tumor Necrosis Factor α-Converting Enzyme Inhibitor, on the Disposition of Methotrexate: A Transporter-Based Drug-Drug Interaction Case Study. Drug Metabolism and Disposition, 2007, 35,	namide], 1.7	11
121	835-840. Biotransformation and transport of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in bile duct-cannulated wild-type and Mrp2/Abcc2-deficient (TR) Wistar rats. Carcinogenesis, 2007, 28, 2650-2656.	1.3	15
122	Differential Inhibition of Rat and Human Na+-Dependent Taurocholate Cotransporting Polypeptide (NTCP/SLC10A1)by Bosentan: A Mechanism for Species Differences in Hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 1170-1178.	1.3	119
123	Roles of P-Glycoprotein, Bcrp, and Mrp2 in Biliary Excretion of Spiramycin in Mice. Antimicrobial Agents and Chemotherapy, 2007, 51, 3230-3234.	1.4	28
124	Use of Sandwich-Cultured Hepatocytes To Evaluate Impaired Bile Acid Transport as a Mechanism of Drug-Induced Hepatotoxicity. Molecular Pharmaceutics, 2007, 4, 911-918.	2.3	80
125	Methods To Evaluate Biliary Excretion of Drugs in Humans:Â An Updated Review. Molecular Pharmaceutics, 2006, 3, 198-211.	2.3	136
126	Determination of the biliary excretion of piperacillin in humans using a novel method. British Journal of Clinical Pharmacology, 2006, 62, 304-308.	1.1	26

#	Article	IF	CITATIONS
127	Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. European Journal of Pharmaceutical Sciences, 2006, 27, 447-486.	1.9	219
128	Effect of culture conditions on the expression and function of Bsep, Mrp2, and Mdr1a/b in sandwich-cultured rat hepatocytes. Biochemical Pharmacology, 2006, 71, 1520-1529.	2.0	52
129	Differential Involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in Biliary Excretion of 4-Methylumbelliferyl Glucuronide and Sulfate in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 459-467.	1.3	74
130	ALTERED HEPATOBILIARY DISPOSITION OF 5 (AND 6)-CARBOXY-2′,7′-DICHLOROFLUORESCEIN INAbcg2(Bcr ANDAbcc2(Mrp2) KNOCKOUT MICE. Drug Metabolism and Disposition, 2006, 34, 718-723.	rp1) 1 .7	59
131	CHARACTERIZATION OF TRANSPORT PROTEIN EXPRESSION IN MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN (MRP) 2-DEFICIENT RATS. Drug Metabolism and Disposition, 2006, 34, 556-562.	1.7	105
132	Ritonavir, Saquinavir, and Efavirenz, but Not Nevirapine, Inhibit Bile Acid Transport in Human and Rat Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1068-1075.	1.3	98
133	Hepatobiliary Disposition of a Drug/Metabolite Pair: Comprehensive Pharmacokinetic Modeling in Sandwich-Cultured Rat Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 881-889.	1.3	35
134	The Important Role of Bcrp (Abcg2) in the Biliary Excretion of Sulfate and Glucuronide Metabolites of Acetaminophen, 4-Methylumbelliferone, and Harmol in Mice. Molecular Pharmacology, 2006, 70, 2127-2133.	1.0	97
135	Evaluation of the Role of Multidrug Resistance-Associated Protein (Mrp) 3 and Mrp4 in Hepatic Basolateral Excretion of Sulfate and Glucuronide Metabolites of Acetaminophen, 4-Methylumbelliferone, and Harmol inAbcc3–/–andAbcc4–/–Mice. Journal of Pharmacology and Experimental Therapeutics. 2006. 319. 1485-1491.	1.3	107
136	Short-term regulation of multidrug resistance-associated protein 3 in rat and human hepatocytes. American Journal of Physiology - Renal Physiology, 2005, 288, G1252-G1258.	1.6	36
137	MULTIPLE MECHANISMS ARE INVOLVED IN THE BILIARY EXCRETION OF ACETAMINOPHEN SULFATE IN THE RAT: ROLE OF MRP2 AND BCRP1. Drug Metabolism and Disposition, 2005, 33, 1158-1165.	1.7	64
138	MODULATION OF HEPATIC CANALICULAR OR BASOLATERAL TRANSPORT PROTEINS ALTERS HEPATOBILIARY DISPOSITION OF A MODEL ORGANIC ANION IN THE ISOLATED PERFUSED RAT LIVER. Drug Metabolism and Disposition, 2005, 33, 1238-1243.	1.7	31
139	MULTIPLE TRANSPORT SYSTEMS MEDIATE THE HEPATIC UPTAKE AND BILIARY EXCRETION OF THE METABOLICALLY STABLE OPIOID PEPTIDE [d-PENICILLAMINE2,5]ENKEPHALIN. Drug Metabolism and Disposition, 2005, 33, 287-293.	1.7	47
140	Role of Glycosylation in Trafficking of Mrp2 in Sandwich-Cultured Rat Hepatocytes. Molecular Pharmacology, 2005, 67, 1334-1341.	1.0	67
141	ASSESSMENT OF DRUG INTERACTIONS IN HEPATOBILIARY TRANSPORT USING RHODAMINE 123 IN SANDWICH-CULTURED RAT HEPATOCYTES. Drug Metabolism and Disposition, 2005, 33, 388-394.	1.7	67
142	Knocking Down Transport: Applications of RNA Interference in The Study of Drug Transport Proteins. Drug Metabolism Reviews, 2005, 37, 705-723.	1.5	12
143	Modulation of Multidrug Resistance-Associated Protein 2 (Mrp2) and Mrp3 Expression and Function with Small Interfering RNA in Sandwich-Cultured Rat Hepatocytes. Molecular Pharmacology, 2004, 66, 1004-1010.	1.0	50
144	EFFECT OF DEXAMETHASONE TREATMENT ON THE EXPRESSION AND FUNCTION OF TRANSPORT PROTEINS IN SANDWICH-CULTURED RAT HEPATOCYTES. Drug Metabolism and Disposition, 2004, 32, 834-839.	1.7	57

#	Article	IF	CITATIONS
145	Hepatobiliary Disposition of the Metabolically Stable Opioid Peptide [d-Pen2, d-Pen5]-Enkephalin (DPDPE): Pharmacokinetic Consequences of the Interplay between Multiple Transport Systems. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1203-1210.	1.3	38
146	Modelling the cardiovascular effects of ephedrine. British Journal of Clinical Pharmacology, 2004, 57, 552-562.	1.1	40
147	The Complexities of Hepatic Drug Transport: Current Knowledge and Emerging Concepts. Pharmaceutical Research, 2004, 21, 719-735.	1.7	235
148	P-glycoprotein Expression, Localization, and Function in Sandwich-Cultured Primary Rat and Human Hepatocytes: Relevance to the Hepatobiliary Disposition of a Model Opioid Peptide. Pharmaceutical Research, 2004, 21, 1294-1302.	1.7	136
149	Viability assessment in sandwich-cultured rat hepatocytes after xenobiotic exposure. Toxicology in Vitro, 2004, 18, 869-877.	1.1	34
150	A novel method for the determination of biliary clearance in humans. AAPS Journal, 2004, 6, 45-52.	2.2	39
151	Xenobiotics Inhibit Hepatic Uptake and Biliary Excretion of Taurocholate in Rat Hepatocytes. Toxicological Sciences, 2004, 83, 207-214.	1.4	60
152	Cytokine Regulation of P-Glycoprotein. Drug Metabolism Reviews, 2003, 35, 19-33.	1.5	51
153	Phenobarbital Alters Hepatic Mrp2 Function by Direct and Indirect Interactions. Molecular Pharmacology, 2003, 64, 154-159.	1.0	34
154	Pharmacokinetics of 5 (and 6)-Carboxy-2′,7′-Dichlorofluorescein and Its Diacetate Promoiety in the Liver. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 801-809.	1.3	150
155	Mechanisms of Impaired Biliary Excretion of Acetaminophen Glucuronide after Acute Phenobarbital Treatment or Phenobarbital Pretreatment. Drug Metabolism and Disposition, 2002, 30, 962-969.	1.7	82
156	Role of Constitutive Androstane Receptor in the In Vivo Induction of Mrp3 and CYP2B1/2 by Phenobarbital. Drug Metabolism and Disposition, 2002, 30, 918-923.	1.7	97
157	Secretory Transport of Ranitidine and Famotidine across Caco-2 Cell Monolayers. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 574-580.	1.3	41
158	Contribution of Morphine-6-Glucuronide to Antinociception following Intravenous Administration of Morphine to Healthy Volunteers. Journal of Clinical Pharmacology, 2002, 42, 569-576.	1.0	71
159	Pharmacogenetics: Is the right drug for the right patient sufficient?. Advanced Drug Delivery Reviews, 2002, 54, 1243-1244.	6.6	3
160	Optimization of culture conditions for determining hepatobiliary disposition of taurocholate in sandwich-cultured rat hepatocytes. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 380-385.	0.7	37
161	Lack of effect of ondansetron on the pharmacokinetics and analgesic effects of morphine and metabolites after single-dose morphine administration in healthy volunteers. British Journal of Clinical Pharmacology, 2001, 51, 309-316.	1.1	10
162	Pharmacokinetic and Pharmacodynamic Implications of P-glycoprotein Modulation. Pharmacotherapy, 2001, 21, 778-796.	1.2	189

#	Article	IF	CITATIONS
163	OPTIMIZATION OF CULTURE CONDITIONS FOR DETERMINING HEPATOBILIARY DISPOSITION OF TAUROCHOLATE IN SANDWICH-CULTURED RAT HEPATOCYTES. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 380.	0.7	22
164	Comparison of zafirlukast (Accolate) absorption after oral and colonic administration in humans. Pharmaceutical Research, 2000, 17, 154-159.	1.7	20
165	Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. American Journal of Physiology - Renal Physiology, 1999, 277, G12-G21.	1.6	105
166	P-glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochemical Pharmacology, 1999, 58, 951-957.	2.0	102
167	Increased brain P-glycoprotein in morphine tolerant rats. Life Sciences, 1999, 66, PL47-PL51.	2.0	88
168	Effect of pancreatico-biliary secretions and GI transit time on the absorption and pharmacokinetic profile of ranitidine in humans. Pharmaceutical Research, 1998, 15, 1281-1285.	1.7	14
169	Use of the InteliSite capsule to study ranitidine absorption from various sites within the human intestinal tract. Pharmaceutical Research, 1998, 15, 1869-1875.	1.7	30
170	Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat. Pharmaceutical Research, 1998, 15, 599-605.	1.7	85
171	Partial maintenance of taurocholate uptake by adult rat hepatocytes cultured in a collagen sandwich configuration. Pharmaceutical Research, 1998, 15, 1533-1539.	1.7	76
172	Phase I trial of a 96 h paclitaxel infusion with filgrastim support in refractory solid tumor patients. Anti-Cancer Drugs, 1998, 9, 611-619.	0.7	8
173	Airway Deposition and Clearance and Systemic Pharmacokinetics of Amiloride Following Aerosolization With an Ultrasonic Nebulizer to Normal Airways. Chest, 1997, 112, 1283-1290.	0.4	38
174	Hepatic distribution and clearance of antisense oligonucleotides in the isolated perfused rat liver. Pharmaceutical Research, 1997, 14, 516-521.	1.7	18
175	Solid-phase extraction and determination of ranitidine in human plasma by a high-performance liquid chromatographic method utilizing midbore chromatography. Biomedical Applications, 1997, 688, 350-353.	1.7	26
176	A MODIFIED RESIDUAL METHOD TO ESTIMATE THE ZERO-ORDER ABSORPTION RATE CONSTANT IN A ONE-COMPARTMENT MODEL. , 1997, 18, 93-101.		6
177	Heat Treatment of Human Serum to Inactivate HIV Does Not Alter Protein Binding of Selected Drugs. Therapeutic Drug Monitoring, 1997, 19, 477-479.	1.0	7
178	Evidence for reversible sequestration of morphine in rat liver. Biochemical Pharmacology, 1996, 52, 535-541.	2.0	2
179	Age-Related Changes in Valproic Acid Binding to Rat Serum Proteins in Vitro*. Journal of Pharmaceutical Sciences, 1996, 85, 373-376.	1.6	2
180	Physiologic Pharmacokinetic Modeling of Gastrointestinal Blood Flow as a Rate-Limiting Step in the Oral Absorption of Digoxin: Implications for Patients with Congestive Heart Failure Receiving Epoprostenol*. Journal of Pharmaceutical Sciences, 1996, 85, 473-477.	1.6	15

#	Article	IF	CITATIONS
181	Isolated Perfused Liver. Pharmaceutical Biotechnology, 1996, 8, 161-192.	0.3	26
182	Vancomycin Serum Concentrations in Patients with Renal Dysfunction: A Comparison of Fluorescence Polarization Immunoassay and the Enzyme-Multiplied Immunoassay Technique. Therapeutic Drug Monitoring, 1996, 18, 647-653.	1.0	14
183	High-Performance Liquid Chromatographic Evaluation of the Effect of Heat Treatment on Trimethoprim and Sulfamethoxazole Stability in Serum. Therapeutic Drug Monitoring, 1995, 17, 356-360.	1.0	3
184	Characterization ofpâ€Hydroxyphenobarbital Glucuronide Generated from Immobilized Rat Hepatic UDPâ€Glucuronosyltransferase. Journal of Pharmaceutical Sciences, 1995, 84, 1134-1136.	1.6	3
185	Castrointestinal transit and distribution of ranitidine in the rat. Pharmaceutical Research, 1995, 12, 1316-1322.	1.7	10
186	Regional gastrointestinal absorption of ranitidine in the rat. Pharmaceutical Research, 1995, 12, 1311-1315.	1.7	15
187	Age-dependent intestinal absorption of valproic acid in the rat. Pharmaceutical Research, 1995, 12, 284-290.	1.7	11
188	Radiolabeling of methylphosphonate and phosphorothioate oligonucleotides and evaluation of their transport in everted rat jejunum sacs. Pharmaceutical Research, 1995, 12, 817-824.	1.7	27
189	Venous Irritation Related to Intravenous Administration of Phenytoin versus Fosphenytoin. Pharmacotherapy, 1994, 14, 47-52.	1.2	74
190	Effects of Probenecid on the pharmacokinetics and pharmacodynamics of adinazolam in humans. Clinical Pharmacology and Therapeutics, 1994, 56, 133-141.	2.3	6
191	Effect of phenobarbital andp-hydroxyphenobarbital glucuronide on acetaminophen metabolites in isolated rat hepatocytes: Use of a kinetic model to examine the rates of formation and egress. Journal of Pharmacokinetics and Pharmacodynamics, 1993, 21, 175-194.	0.6	11
192	Protein binding and hepatobiliary distribution of valproic acid and valproate glucuronide in rats. Biochemical Pharmacology, 1993, 45, 735-742.	2.0	19
193	Hepatic disposition of acetaminophen and metabolites. Biochemical Pharmacology, 1993, 46, 739-746.	2.0	11
194	Toxicokinetics of Intravenous Methanol in the Female Rat. Toxicological Sciences, 1993, 21, 105-110.	1.4	0
195	Thermal injury decreases hepatic blood flow and the intrinsic clearance of indocyanine green in the rat. Pharmaceutical Research, 1991, 08, 106-111.	1.7	6
196	Physiologic and metabolic influences on enterohepatic recirculation: Simulations based upon the disposition of valproic acid in the rat. Journal of Pharmacokinetics and Pharmacodynamics, 1991, 19, 189-225.	0.6	34
197	Absolute Bioavailability of Phenytoin After 3â€Phosphoryloxymethyl Phenytoin Disodium (ACCâ€9653)Administration to Humans. Epilepsia, 1990, 31, 592-597.	2.6	37
198	Evaluation of the pharmacokinetic interaction between diazepam and ACC-9653 (a phenytoin prodrug) in healthy male volunteers. Pharmaceutical Research, 1990, 07, 1172-1176.	1.7	13

#	Article	IF	CITATIONS
199	Drug Transport in the Liver. , 0, , 359-410.		7