Jingwei Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8112403/jingwei-sun-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34 papers 289 16 h-index 29-index 31 g-index 35 ext. papers 25-3 avg, IF L-index

#	Paper	IF	Citations
34	In-situ electro-polymerization of fluorescent electrochromic thin films based on charge-transfer complexes. <i>Chemical Engineering Journal</i> , 2022 , 428, 132625	14.7	5
33	Integrated electrochromic and electrofluorochromic properties from polyaniline-like polymers with triphenylacrylonitrile as side groups. <i>Electrochimica Acta</i> , 2022 , 421, 140443	6.7	2
32	Near-infrared piezochromism of AIE-active luminophore in hybridized local and charge-transfer excited state E he effect of shortened donor-acceptor distance. <i>Dyes and Pigments</i> , 2022 , 204, 110457	4.6	О
31	ChargeII ransfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative. <i>Crystals</i> , 2021 , 11, 1370	2.3	
30	Highly Bright Fluorescence from Dispersed Dimers: Deep-Red Polymorphs and Wide-Range Piezochromism. <i>Advanced Optical Materials</i> , 2020 , 8, 1901836	8.1	21
29	Organogelator based on long alkyl chain attached excimer precursor: Two channels of TICT, highly efficient and switchable luminescence. <i>Dyes and Pigments</i> , 2020 , 180, 108433	4.6	4
28	Organic Luminophores Exhibiting Bimodal Emissions of Fluorescence and Room-Temperature Phosphorescence for Versatile Applications. <i>ChemistrySelect</i> , 2020 , 5, 12770-12776	1.8	5
27	Excitation Wavelength Dependent Fluorescence of an ESIPT Triazole Derivative for Amine Sensing and Anti-Counterfeiting Applications. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8773-8778	16.4	91
26	A Fluorescent Chemosensor with a Hybridized Local and Charge Transfer Nature and Aggregation-Induced Emission Effect for the Detection of Picric Acid. <i>ChemistrySelect</i> , 2019 , 4, 2868-28	17 ¹ 3 ⁸	4
25	Solid-State TICT-Emissive Cruciform: Aggregation-Enhanced Emission, Deep-Red to Near-Infrared Piezochromism and Imaging In Vivo. <i>Advanced Optical Materials</i> , 2018 , 6, 1800956	8.1	32
24	Nanomaterials in Electrochemiluminescence Sensors. <i>ChemElectroChem</i> , 2017 , 4, 1651-1662	4.3	33
23	Highly Twisted Isomers of Triphenylacrylonitrile Derivatives with High Emission Efficiency and Mechanochromic Behavior. <i>ChemPhysChem</i> , 2017 , 18, 1481-1485	3.2	4
22	Swift Electrofluorochromism of Donor-Acceptor Conjugated Polytriphenylamines. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	54
21	Electroluminochromic Materials and Devices. Advanced Functional Materials, 2016, 26, 2783-2799	15.6	69
20	Ratiometric pressure sensors based on cyano-substituted oligo(p-phenylene vinylene) derivatives in the hybridized local and charge-transfer excited state. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9954	1- 3 960	38
19	Unique torsional cruciform Earchitectures composed of donor and acceptor axes exhibiting mechanochromic and electrochromic properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3356-3363	7.1	64
18	Effect of stacking mode on the mechanofluorochromic properties of 3-aryl-2-cyano acrylamide derivatives. <i>New Journal of Chemistry</i> , 2015 , 39, 659-663	3.6	27

LIST OF PUBLICATIONS

17	Polymorphic crystals and their luminescence switching of triphenylacrylonitrile derivatives upon solvent vapour, mechanical, and thermal stimuli. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3049-3054	7.1	70
16	Heating and mechanical force-induced luminescence on of ff switching of arylamine derivatives with highly distorted structures. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 195-200	7.1	74
15	Ferrocene-Functionalized Poly(6-(3,6-di(thiophen-2-yl)-9H-carbazol-9-yl)-hexyl Ferrocenecarboxylate): Effect of the Ferrocene on Electrochromic Properties. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H337-H342	3.9	9
14	A coreBhell composite of porous ZnO nanosheets and a multichromic conducting polymer: enhanced electrochromic performances. <i>New Journal of Chemistry</i> , 2014 , 38, 2400-2406	3.6	11
13	A donor Ecceptor cruciform Esystem: high contrast mechanochromic properties and multicolour electrochromic behavior. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5365	7.1	112
12	Mechanical force induced reversible fluorescence switching of two 3-aryl-2-cyano acrylamide derivatives. <i>Tetrahedron Letters</i> , 2014 , 55, 3200-3205	2	13
11	Fabrication of Nano/Microstructure of Cyano Substituted Oligo(para-phenylenevinylene) with Aggregation-Induced Emission and Morphology Dependent Luminescence. <i>Integrated Ferroelectrics</i> , 2014 , 153, 42-47	0.8	1
10	Design, Synthesis and Characterization of Triarylacrylonitrile Compounds Exhibiting Aggregation-Induced Emission and High Contrast Reversible Mechanochromism. <i>Chinese Journal of Organic Chemistry</i> , 2014 , 34, 161	3	3
9	Mechanochromic and thermochromic fluorescent properties of cyanostilbene derivatives. <i>Dyes and Pigments</i> , 2013 , 98, 486-492	4.6	63
8	Heating and mechanical force-induced Eurn onlfluorescence of cyanostilbene derivative with H-type stacking. <i>CrystEngComm</i> , 2013 , 15, 8998	3.3	39
7	Organic Luminescent Molecule/ZnO Nanocomposite Film with Colors Tuning. <i>Integrated Ferroelectrics</i> , 2013 , 146, 48-53	0.8	
6	Effects on the electrochemical and electrochromic properties of 3,6 linked polycarbazole derivative by the introduction of different acceptor groups and copolymerization. <i>Organic Electronics</i> , 2013 , 14, 1521-1530	3.5	45
5	Aggregation-Induced Emission of Z-2, 3-bis(4-(thiophen-3-yl)-phenyl)-acrylonitrile and Electrochromic Properties of its Copolymer with 3, 4-Ethylenedioxythiophene. <i>Journal of the Electrochemical Society</i> , 2013 , 160, H173-H178	3.9	1
4	Electrochemical Fabrication of Poly(1,4-bis(2-thienyl)-benzene)/ZnO Nanoridge Composite Film with Enhanced Electrochromic Performance. <i>Journal of the Electrochemical Society</i> , 2013 , 160, H87-H92	3.9	4
3	Synthesis and Characterization of New Cyanostilbene-Based Compound Exhibiting Reversible Mechanochromism. <i>Acta Chimica Sinica</i> , 2013 , 71, 613	3.3	10
2	Noncrystalline blue-emitting 9,10-diphenylanthracene end-capped with triphenylamine-substituted fluorene. <i>Journal of Photochemistry and Photobiology A: Chemistry,</i> 2012 , 227, 59-64	4.7	6
1	Cyanostilben-based derivatives: mechanical stimuli-responsive luminophors with aggregation-induced emission enhancement. <i>Photochemical and Photobiological Sciences.</i> 2012 . 11. 141	4 2 1	75