Andrew C Allan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8112063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A chromosomeâ€scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Molecular Ecology Resources, 2022, 22, 345-360.	2.2	28
2	Hierarchical regulation of <i>MYBPA1</i> by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in <i>Vaccinium</i> species. Journal of Experimental Botany, 2022, 73, 1344-1356.	2.4	20
3	A MADSâ€box gene with similarity to <i>FLC</i> is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. New Phytologist, 2022, 233, 2111-2126.	3.5	25
4	microRNA172 targets <i>APETALA2</i> to regulate flavonoid biosynthesis in apple (<i>Malus) Tj ETQq0 0 0 rgB1</i>	[/Overlock	10 Tf 50 622
5	The red flesh of kiwifruit is differentially controlled by specific activation–repression systems. New Phytologist, 2022, 235, 630-645.	3.5	37
6	<i>Shy Girl</i> , a kiwifruit suppressor of feminization, restricts gynoecium development via regulation of cytokinin metabolism and signalling. New Phytologist, 2021, 230, 1461-1475.	3.5	29
7	A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biology, 2021, 21, 121.	1.6	18
8	RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. Tree Physiology, 2021, 41, 1510-1523.	1.4	24
9	Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors. Horticulture Research, 2021, 8, 77.	2.9	28
10	NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC Plant Biology, 2021, 21, 275.	1.6	9
11	Time to retire? A lifeâ€changing decision made by NAC transcription factors. New Phytologist, 2021, 231, 505-507.	3.5	3
12	The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. Plant Molecular Biology, 2021, 106, 407-417.	2.0	32
13	An ethyleneâ€hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. New Phytologist, 2021, 232, 237-251.	3.5	37
14	MYBA and MYBPA transcription factors coâ€regulate anthocyanin biosynthesis in blueâ€coloured berries. New Phytologist, 2021, 232, 1350-1367.	3.5	56
15	Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 2021, 14, 1454-1471.	3.9	47
16	Plant biology: Environmental extremes induce a jump in peach fitness. Current Biology, 2021, 31, R1046-R1048.	1.8	0
17	Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC Plant Biology, 2021, 21, 411.	1.6	14
18	Rate of banana fruit ripening depends on genome composition and gene expression of ethylene signaling and ethylene biosynthesis. Scientia Horticulturae, 2021, 290, 110552.	1.7	5

#	Article	IF	CITATIONS
19	The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. Molecular Horticulture, 2021, 1, .	2.3	16
20	Genomeâ€wide analysis of coding and nonâ€coding RNA reveals a conserved miR164â€ <i>NAC</i> regulatory pathway for fruit ripening. New Phytologist, 2020, 225, 1618-1634.	3.5	86
21	<i>PpGST1</i> , an anthocyaninâ€related glutathione Sâ€transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal, 2020, 18, 1284-1295.	4.1	93
22	DNA demethylation is involved in the regulation of temperatureâ€dependent anthocyanin accumulation in peach. Plant Journal, 2020, 102, 965-976.	2.8	56
23	Kiwifruit with high anthocyanin content modulates NF-κB activation and reduces CCL11 secretion in human alveolar epithelial cells. Journal of Functional Foods, 2020, 65, 103734.	1.6	13
24	Carbon starvation reduces carbohydrate and anthocyanin accumulation in redâ€fleshed fruit via trehalose 6â€phosphate and MYB27. Plant, Cell and Environment, 2020, 43, 819-835.	2.8	33
25	Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules, 2020, 164, 2450-2464.	3.6	15
26	An improved method for transformation of Actinidia arguta utilized to demonstrate a central role for MYB110 in regulating anthocyanin accumulation in kiwiberry. Plant Cell, Tissue and Organ Culture, 2020, 143, 291-301.	1.2	8
27	The proanthocyanin-related transcription factors MYBC1 and WRKY44 regulate branch points in the kiwifruit anthocyanin pathway. Scientific Reports, 2020, 10, 14161.	1.6	44
28	Small RNAs With a Big Impact on Horticultural Traits. Critical Reviews in Plant Sciences, 2020, 39, 30-43.	2.7	19
29	The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of <i>FaMYB10</i> and anthocyanin pathway genes. Plant Biotechnology Journal, 2020, 18, 2267-2279.	4.1	82
30	Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules, 2020, 148, 817-832.	3.6	51
31	The Photomorphogenic Transcription Factor PpHY5 Regulates Anthocyanin Accumulation in Response to UVA and UVB Irradiation. Frontiers in Plant Science, 2020, 11, 603178.	1.7	20
32	Phytohormone and Transcriptomic Analysis Reveals Endogenous Cytokinins Affect Kiwifruit Growth under Restricted Carbon Supply. Metabolites, 2020, 10, 23.	1.3	27
33	A kiwifruit (<i>Actinidia deliciosa</i>) R2R3â€ <scp>MYB</scp> transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist, 2019, 221, 309-325.	3.5	160
34	<i>PbrmiR397a</i> regulates lignification during stone cell development in pear fruit. Plant Biotechnology Journal, 2019, 17, 103-117.	4.1	114
35	Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants, 2019, 5, 801-809.	4.7	148
36	NtMYB3, an R2R3-MYB from Narcissus, Regulates Flavonoid Biosynthesis. International Journal of Molecular Sciences, 2019, 20, 5456.	1.8	56

#	Article	IF	CITATIONS
37	Red to Brown: An Elevated Anthocyanic Response in Apple Drives Ethylene to Advance Maturity and Fruit Flesh Browning. Frontiers in Plant Science, 2019, 10, 1248.	1.7	41
38	Domestication: Colour and Flavour Joined by a Shared Transcription Factor. Current Biology, 2019, 29, R57-R59.	1.8	7
39	PbrMYB169 positively regulates lignification of stone cells in pear fruit. Journal of Experimental Botany, 2019, 70, 1801-1814.	2.4	73
40	StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany, 2019, 70, 3809-3824.	2.4	95
41	Apple B-box factors regulate light-responsive anthocyanin biosynthesis genes. Scientific Reports, 2019, 9, 17762.	1.6	38
42	The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research, 2019, 6, 134.	2.9	61
43	Activatorâ€ŧype R2R3â€MYB genes induce a repressorâ€ŧype R2R3â€MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist, 2019, 221, 1919-1934.	3.5	190
44	Histone modification and activation by SOC1-like and drought stress-related transcription factors may regulate AcSVP2 expression during kiwifruit winter dormancy. Plant Science, 2019, 281, 242-250.	1.7	28
45	Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species). Horticulture Research, 2019, 6, 3.	2.9	94
46	Mutagenesis of kiwifruit <i><scp>CENTRORADIALIS</scp></i> â€like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal, 2019, 17, 869-880.	4.1	106
47	The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiology and Biochemistry, 2018, 125, 232-238.	2.8	31
48	Solar UV light regulates flavonoid metabolism in apple (<i>Malus</i> x <i>domestica)</i> . Plant, Cell and Environment, 2018, 41, 675-688.	2.8	146
49	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	1.2	167
50	Kiwifruit SVP2 controls developmental and drought-stress pathways. Plant Molecular Biology, 2018, 96, 233-244.	2.0	17
51	Identification of Genes Involved in Flavonoid Biosynthesis of Chinese Narcissus (Narcissus tazetta L.) Tj ETQq1 1	0.784314 1.0	⊦rgβT /Over <mark>l</mark> ⊙
52	Orange is not just a colour. Nature Plants, 2018, 4, 865-866.	4.7	1
53	MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. Frontiers in Plant Science, 2018, 9, 1300.	1.7	55
54	Characterization and differential expression of ethylene receptor genes during fruit development and dehiscence of durian (Durio zibethinus). Scientia Horticulturae, 2018, 240, 623-630.	1.7	13

#	Article	IF	CITATIONS
55	Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco. Molecules, 2018, 23, 781.	1.7	50
56	MYBs Drive Novel Consumer Traits in Fruits and Vegetables. Trends in Plant Science, 2018, 23, 693-705.	4.3	116
57	Ac <scp>FT</scp> promotes kiwifruit inÂvitro flowering when overexpressed and Arabidopsis flowering when expressed in the vasculature under its own promoter. Plant Direct, 2018, 2, e00068.	0.8	11
58	Overexpression of both AcSVP1 and AcSVP4 delays budbreak in kiwifruit A. chinensis var. deliciosa, but only AcSVP1 delays flowering in model plants. Environmental and Experimental Botany, 2018, 153, 262-270.	2.0	14
59	Carotenoid accumulation and gene expression during durian (Durio zibethinus) fruit growth and ripening. Scientia Horticulturae, 2017, 220, 233-242.	1.7	28
60	Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression. Plant Physiology and Biochemistry, 2017, 115, 308-319.	2.8	28
61	Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. Journal of Experimental Botany, 2017, 68, 1539-1553.	2.4	39
62	Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany, 2017, 68, 1071-1082.	2.4	62
63	Mapâ€based cloning of the pear gene <i><scp>MYB</scp>114</i> identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92, 437-451.	2.8	279
64	Molecular architectures of benzoic acid-specific type III polyketide synthases. Acta Crystallographica Section D: Structural Biology, 2017, 73, 1007-1019.	1.1	11
65	SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science, 2017, 08, 477.	1.7	121
66	Differential Sensitivity of Fruit Pigmentation to Ultraviolet Light between Two Peach Cultivars. Frontiers in Plant Science, 2017, 8, 1552.	1.7	57
67	Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species. Frontiers in Plant Science, 2017, 8, 1864.	1.7	38
68	Genetics of Pigment Biosynthesis and Degradation. Compendium of Plant Genomes, 2016, , 149-161.	0.3	6
69	The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports, 2016, 6, 20151.	1.6	49
70	The Genetics of Kiwifruit Flavor and Fragrance. Compendium of Plant Genomes, 2016, , 135-147.	0.3	7
71	Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany, 2016, 67, 2159-2176.	2.4	163
72	Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. Frontiers in Plant Science, 2015, 6, 908.	1.7	45

#	Article	IF	CITATIONS
73	De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens. International Journal of Molecular Sciences, 2015, 16, 11550-11573.	1.8	47
74	Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors. Plant Physiology, 2015, 167, 1243-1258.	2.3	178
75	Molecular genetics of bloodâ€fleshed peach reveals activation of anthocyanin biosynthesis by <scp>NAC</scp> transcription factors. Plant Journal, 2015, 82, 105-121.	2.8	404
76	In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. Journal of Experimental Botany, 2015, 66, 1427-1436.	2.4	117
77	The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content. BMC Plant Biology, 2015, 15, 185.	1.6	65
78	Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis. PLoS ONE, 2015, 10, e0129148.	1.1	75
79	Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biology, 2014, 14, 388.	1.6	89
80	Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Frontiers in Plant Science, 2014, 5, 651.	1.7	124
81	The red sport of â€~Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry, 2014, 107, 16-23.	1.4	60
82	Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. Journal of Experimental Botany, 2014, 65, 4985-4995.	2.4	59
83	Regulation of lignin biosynthesis in fruit pericarp hardening of mangosteen (Garcinia mangostana L.) after impact. Postharvest Biology and Technology, 2014, 97, 68-76.	2.9	54
84	Dietary Flavonoids from Modified Apple Reduce Inflammation Markers and Modulate Gut Microbiota in Mice. Journal of Nutrition, 2014, 144, 146-154.	1.3	153
85	Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses. PLoS ONE, 2014, 9, e84426.	1.1	81
86	The Draft Genome Sequence of European Pear (Pyrus communis L. â€~Bartlett'). PLoS ONE, 2014, 9, e92644.	1.1	241
87	Identification of Regulatory Genes Implicated in Continuous Flowering of Longan (Dimocarpus) Tj ETQq1 1 0.7843	814 rgBT / 1.1	Overlock 10
88	Feasibility of Genome-wide Association Analysis Using a Small Single Nucleotide Polymorphism Panel in an Apple Breeding Population Segregating for Fruit Skin Color. Journal of the American Society for Horticultural Science, 2014, 139, 619-626.	0.5	7
89	An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genomics, 2013, 14, 28.	1.2	73
90	Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13, 68.	1.6	247

#	Article	IF	CITATIONS
91	QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theoretical and Applied Genetics, 2013, 126, 847-865.	1.8	17
92	The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell, Tissue and Organ Culture, 2013, 115, 285-298.	1.2	60
93	Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry. Plant Cell, Tissue and Organ Culture, 2013, 113, 491-499.	1.2	34
94	Redâ€foliaged apples affect the establishment, growth, and development of the light brown apple moth, <i><scp>E</scp>piphyas postvittana</i> . Entomologia Experimentalis Et Applicata, 2013, 146, 261-275.	0.7	11
95	Analysis of genetically modified redâ€fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnology Journal, 2013, 11, 408-419.	4.1	92
96	A Genome-Wide Expression Profile of Salt-Responsive Genes in the Apple Rootstock Malus zumi. International Journal of Molecular Sciences, 2013, 14, 21053-21070.	1.8	25
97	Endogenous cytokinin in developing kiwifruit is implicated in maintaining fruit flesh chlorophyll levels. Annals of Botany, 2013, 112, 57-68.	1.4	29
98	Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. Journal of Experimental Botany, 2012, 63, 5437-5450.	2.4	74
99	Metabolic and gene expression analysis of apple (Malus × domestica) carotenogenesis. Journal of Experimental Botany, 2012, 63, 4497-4511.	2.4	75
100	The control of chlorophyll levels in maturing kiwifruit. Planta, 2012, 236, 1615-1628.	1.6	55
101	Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics, 2012, 13, 19.	1.2	199
102	An Ancient Duplication of Apple MYB Transcription Factors Is Responsible for Novel Red Fruit-Flesh Phenotypes Â. Plant Physiology, 2012, 161, 225-239.	2.3	272
103	Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Horticulturae, 2012, 147, 118-125.	1.7	124
104	The mQTL hotspot on linkage group 16 for phenolic compounds in apple fruits is probably the result of a leucoanthocyanidin reductase gene at that locus. BMC Research Notes, 2012, 5, 618.	0.6	14
105	Postharvest temperature influences volatile lactone production via regulation of acyl oA oxidases in peach fruit. Plant, Cell and Environment, 2012, 35, 534-545.	2.8	58
106	Differential expression of kiwifruit ERF genes in response to postharvest abiotic stress. Postharvest Biology and Technology, 2012, 66, 1-7.	2.9	40
107	Enhancing ascorbate in fruits and tubers through overâ€expression of the <scp>l</scp> â€galactose pathway gene GDPâ€ <scp>l</scp> â€galactose phosphorylase. Plant Biotechnology Journal, 2012, 10, 390-397.	4.1	199
108	QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology, 2012, 12, 12.	1.6	117

#	Article	IF	CITATIONS
109	High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell and Environment, 2011, 34, 1176-1190.	2.8	330
110	Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in redâ€fleshed kiwifruit (<i>Actinidia chinensis</i>). Plant Journal, 2011, 65, 106-118.	2.8	164
111	The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43, 109-116.	9.4	1,091
112	Differential Gene Expression Analysis of Yunnan Red Pear, Pyrus Pyrifolia, During Fruit Skin Coloration. Plant Molecular Biology Reporter, 2011, 29, 305-314.	1.0	78
113	Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11, 93.	1.6	227
114	Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta, 2010, 231, 887-899.	1.6	254
115	QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium) Tj ETQq1	1 0,784314 0.6	· rgBT /Overl
116	An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010, 10, 50.	1.6	576
117	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	9.4	1,891
118	Identification of Mendel's White Flower Character. PLoS ONE, 2010, 5, e13230.	1.1	135
119	Kiwifruit <i>EIL</i> and <i>ERF</i> Genes Involved in Regulating Fruit Ripening Â. Plant Physiology, 2010, 153, 1280-1292.	2.3	249
120	Colour development and quality of mangosteen (Garcinia mangostana L.) fruit during ripening and after harvest. Postharvest Biology and Technology, 2009, 51, 349-353.	2.9	94
121	Ethylene-related genes show a differential response to low temperature during â€~Hayward' kiwifruit ripening. Postharvest Biology and Technology, 2009, 52, 9-15.	2.9	53
122	Expression of ROP/RAC GTPase genes in postharvest loquat fruit in association with senescence and cold regulated lignification. Postharvest Biology and Technology, 2009, 54, 9-14.	2.9	17
123	A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana) Tj ETQq1 I	0,784314	rgBT /Overlo ¥20
124	Effects of redâ€leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, <i>Spodoptera litura</i> and <i>Helicoverpa armigera</i> . Entomologia Experimentalis Et Applicata, 2009, 133, 117-127.	0.7	36
125	Environmental regulation of leaf colour in red <i>35S:PAP1 Arabidopsis thaliana</i> . New Phytologist, 2009, 182, 102-115.	3.5	215
126	Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. Plant Cell, 2009, 21, 168-183.	3.1	453

#	Article	IF	CITATIONS
127	Apple Functional Genomics. , 2009, , 121-142.		3
128	The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. Journal of Experimental Botany, 2009, 60, 3765-3779.	2.4	132
129	Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics, 2008, 9, 351.	1.2	178
130	Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Methods, 2008, 4, 17.	1.9	73
131	MYB transcription factors that colour our fruit. Trends in Plant Science, 2008, 13, 99-102.	4.3	594
132	Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. Journal of Experimental Botany, 2008, 59, 2097-2108.	2.4	112
133	Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal, 2007, 49, 414-427.	2.8	1,113
134	Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics, 2007, 8, 212.	1.2	195
135	Characterisation of the DELLA subfamily in apple (Malus x domestica Borkh.). Tree Genetics and Genomes, 2007, 3, 187-197.	0.6	43
136	Analyses of Expressed Sequence Tags from Apple. Plant Physiology, 2006, 141, 147-166.	2.3	246
137	Heat-induced oxidative activity protects suspension-cultured plant cells from low temperature damage. Functional Plant Biology, 2006, 33, 67.	1.1	10
138	Flow cytometric analysis of tracheary element differentiation inZinnia elegans cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 68A, 81-91.	1.1	20
139	Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 2005, 1, 13.	1.9	1,290
140	Efficient transient transformation of suspension culture-derived apple protoplasts. Plant Cell, Tissue and Organ Culture, 2002, 70, 77-82.	1.2	19
141	Heat-induced protection against death of suspension-cultured apple fruit cells exposed to low temperature. Plant, Cell and Environment, 2001, 24, 1199-1207.	2.8	36
142	An Early Tobacco Mosaic Virus-Induced Oxidative Burst in Tobacco Indicates Extracellular Perception of the Virus Coat Protein. Plant Physiology, 2001, 126, 97-108.	2.3	96
143	The characterization of differential calcium signalling in tobacco guard cells. Plant Journal, 2000, 24, 335-344.	2.8	46
144	The intracellular events triggered by the self-incompatibility response inPapaver rhoeas. Protoplasma, 1999, 208, 99-106.	1.0	8

#	Article	IF	CITATIONS
145	Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells. Plant Cell, 1997, 9, 1559.	3.1	117
146	Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells Plant Cell, 1997, 9, 1559-1572.	3.1	439
147	Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate. Plant Cell, 1996, 8, 1305.	3.1	60
148	Effects of mechanical signaling on plant cell cytosolic calcium Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4124-4128.	3.3	147
149	Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells. Plant Cell, 1994, 6, 1319.	3.1	60
150	The effects of calcium deficiency on Cucurbita pepo L. hypocotyl cells: A 31P nuclear-magnetic-resonance study. Planta, 1993, 189, 306-311.	1.6	2
151	Kiwifruit maturation, ripening and environmental response is not affected by CENTRORADIALIS (CEN) gene-editing. New Zealand Journal of Crop and Horticultural Science, 0, , 1-17.	0.7	2
152	Characterisation of induced Malus x domestica â€~Royal Gala' cell differentiation by using different hormones in cell cultures. Journal of Horticultural Science and Biotechnology, 0, , 1-15.	0.9	1
153	The Coordinated Action of MYB Activators and Repressors Controls Proanthocyanidin and Anthocyanin Biosynthesis in Vaccinium. Frontiers in Plant Science, 0, 13, .	1.7	8