
## **Christophe Glorieux**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8112011/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reductive TCA cycle catalyzed by wild-type IDH2 promotes acute myeloid leukemia and is a metabolic vulnerability for potential targeted therapy. Journal of Hematology and Oncology, 2022, 15, 30. | 17.0 | 19        |
| 2  | Cisplatin and gemcitabine exert opposite effects on immunotherapy with PD-1 antibody in K-ras-driven cancer. Journal of Advanced Research, 2022, 40, 109-124.                                      | 9.5  | 10        |
| 3  | Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox<br>Biology, 2021, 38, 101780.                                                                   | 9.0  | 42        |
| 4  | Diverse effects of chemotherapeutic agents on immune cell function and implications in immunochemotherapy. Cancer Communications, 2021, 41, 432-435.                                               | 9.2  | 8         |
| 5  | Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling. Molecular Metabolism, 2021, 48, 101203.                                                 | 6.5  | 22        |
| 6  | Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer. Oncogene, 2021, 40, 5880-5892.                                               | 5.9  | 15        |
| 7  | Vitamin C (Ascorbate) and Redox Topics in Cancer. Antioxidants and Redox Signaling, 2021, 35, 1157-1175.                                                                                           | 5.4  | 6         |
| 8  | The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers, 2021, 13, 4426.                                                                                           | 3.7  | 15        |
| 9  | Treatment and Survival Outcomes Associated With Platinum Plus Low-Dose, Long-term Fluorouracil<br>for Metastatic Nasopharyngeal Carcinoma. JAMA Network Open, 2021, 4, e2138444.                   | 5.9  | 0         |
| 10 | Oncogenic K-ras Induces Mitochondrial OPA3 Expression to Promote Energy Metabolism in Pancreatic<br>Cancer Cells. Cancers, 2020, 12, 65.                                                           | 3.7  | 18        |
| 11 | Regulation of CD137 expression through Kâ€Ras signaling in pancreatic cancer cells. Cancer<br>Communications, 2019, 39, 1-11.                                                                      | 9.2  | 14        |
| 12 | Cancer Cell Sensitivity to Redox-Cycling Quinones is Influenced by NAD(P)H: Quinone Oxidoreductase 1<br>Polymorphism. Antioxidants, 2019, 8, 369.                                                  | 5.1  | 15        |
| 13 | Targeting hsp90 family members: A strategy to improve cancer cell death. Biochemical Pharmacology, 2019, 164, 177-187.                                                                             | 4.4  | 14        |
| 14 | CD137 expression in cancer cells: regulation and significance. Cancer Communications, 2019, 39, 70.                                                                                                | 9.2  | 11        |
| 15 | Catalase down-regulation in cancer cells exposed to arsenic trioxide is involved in their increased sensitivity to a pro-oxidant treatment. Cancer Cell International, 2018, 18, 24.               | 4.1  | 38        |
| 16 | Impact of <i>Nrf2</i> on tumour growth and drug sensitivity in oncogenic K-ras-transformed cells<br><i>in vitro</i> and <i>in vivo</i> . Free Radical Research, 2018, 52, 661-671.                 | 3.3  | 13        |
| 17 | Glucose-regulated protein of 94 kDa contributes to the development of an aggressive phenotype in breast cancer cells. Biomedicine and Pharmacotherapy, 2018, 105, 115-120.                         | 5.6  | 13        |
| 18 | Evaluation of Potential Mechanisms Controlling the Catalase Expression in Breast Cancer Cells.<br>Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.                                     | 4.0  | 21        |

CHRISTOPHE GLORIEUX

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chemotherapy induces tumor immune evasion by upregulation of programmed cell death ligandÂ1<br>expression in bone marrow stromal cells. Molecular Oncology, 2017, 11, 358-372.                                                          | 4.6 | 43        |
| 20 | Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biological Chemistry, 2017, 398, 1095-1108.                                                                             | 2.5 | 388       |
| 21 | Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress. Free Radical Biology and Medicine, 2016, 99, 436-450.                                                                    | 2.9 | 40        |
| 22 | Overexpression of NAD(P)H:quinone oxidoreductase 1 (NQO1) and genomic gain of the NQO1 locus modulates breast cancer cell sensitivity to quinones. Life Sciences, 2016, 145, 57-65.                                                     | 4.3 | 30        |
| 23 | Regulation of catalase expression in healthy and cancerous cells. Free Radical Biology and Medicine, 2015, 87, 84-97.                                                                                                                   | 2.9 | 190       |
| 24 | Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochemical Pharmacology, 2014, 89, 217-223.                                                                                  | 4.4 | 37        |
| 25 | AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells.<br>Biochemical Pharmacology, 2014, 91, 168-180.                                                                                                | 4.4 | 38        |
| 26 | Hsp90 Is Cleaved by Reactive Oxygen Species at a Highly Conserved N-Terminal Amino Acid Motif. PLoS<br>ONE, 2012, 7, e40795.                                                                                                            | 2.5 | 54        |
| 27 | Overexpression of GRP94 in breast cancer cells resistant to oxidative stress promotes high levels of cancer cell proliferation and migration: Implications for tumor recurrence. Free Radical Biology and Medicine, 2012, 52, 993-1002. | 2.9 | 78        |
| 28 | Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochemical Pharmacology, 2011, 82, 1384-1390.                                                            | 4.4 | 119       |
| 29 | Intracellular ATP levels determine cell death fate of cancer cells exposed to both standard and redox chemotherapeutic agents. Biochemical Pharmacology, 2011, 82, 1540-1548.                                                           | 4.4 | 45        |
| 30 | Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated<br>forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study. Investigational New<br>Drugs, 2011, 29, 891-900.   | 2.6 | 50        |