
Brian D Condon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8111752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of TEMPO-oxidized peptide-cellulose conjugate biosensors for detecting human neutrophil elastase. Cellulose, 2022, 29, 1293-1305.	2.4	11
2	Structure/Function Analysis of Truncated Amino-Terminal ACE2 Peptide Analogs That Bind to SARS-CoV-2 Spike Glycoprotein. Molecules, 2022, 27, 2070.	1.7	3
3	Ascorbic Acid as an Adjuvant to Unbleached Cotton Promotes Antimicrobial Activity in Spunlace Nonwovens. International Journal of Molecular Sciences, 2022, 23, 3598.	1.8	4
4	Detection of Human Neutrophil Elastase by Fluorescent Peptide Sensors Conjugated to TEMPO-Oxidized Nanofibrillated Cellulose. International Journal of Molecular Sciences, 2022, 23, 3101.	1.8	8
5	Silver Nanoparticle-Intercalated Cotton Fiber for Catalytic Degradation of Aqueous Organic Dyes for Water Pollution Mitigation. Nanomaterials, 2022, 12, 1621.	1.9	6
6	Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. Polymers, 2022, 14, 2154.	2.0	2
7	Thermosensitive textiles made from silver nanoparticle-filled brown cotton fibers. Nanoscale Advances, 2022, 4, 3725-3736.	2.2	4
8	Lignin-containing cellulose nanofibers with gradient lignin content obtained from cotton gin motes and cotton gin trash. Cellulose, 2021, 28, 757-773.	2.4	17
9	Functional assessment of biodegradable cotton nonwoven substrates permeated with spatial insect repellants for disposable applications. Textile Reseach Journal, 2021, 91, 1578-1593.	1.1	0
10	Effect of Nanocellulose on the Properties of Cottonseed Protein Isolate as a Paper Strength Agent. Materials, 2021, 14, 4128.	1.3	7
11	Physical and performance characteristics of nonwoven aviation wipers composed of various staple fibers including raw cotton. Journal of Industrial Textiles, 2020, 49, 1198-1217.	1.1	1
12	Method for identifying the triple transition (glass transition-dehydration-crystallization) of amorphous cellulose in cotton. Carbohydrate Polymers, 2020, 228, 115374.	5.1	23
13	Optimized hydroentanglement processing parameters for nonwoven fabrics composed entirely of cotton fibers. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502093543.	0.5	3
14	Thermal properties and surface chemistry of cotton varieties mineralized with calcium carbonate polymorphs by cyclic dipping. RSC Advances, 2020, 10, 35214-35225.	1.7	3
15	Cellulose hydrolysis using ionic liquids and inorganic acids under dilute conditions: morphological comparison of nanocellulose. RSC Advances, 2020, 10, 39413-39424.	1.7	37
16	Development of a Nonwoven Hemostatic Dressing Based on Unbleached Cotton: A De Novo Design Approach. Pharmaceutics, 2020, 12, 609.	2.0	9
17	Flame Resistant Cotton Fabric Containing Casein and Inorganic Materials Using an Environmentally-Friendly Microwave Assisted Technique. Fibers and Polymers, 2020, 21, 2246-2252.	1.1	3
18	Application of Brown Cotton-Supported Palladium Nanoparticles in Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 6304-6309.	2.4	14

#	Article	IF	CITATIONS
19	Practical SERS method for assessment of the washing durability of textiles containing silver nanoparticles. Analytical Methods, 2020, 12, 1186-1196.	1.3	2
20	Structure/Function Relations of Chronic Wound Dressings and Emerging Concepts on the Interface of Nanocellulosic Sensors. , 2020, , 249-278.		2
21	Silver Nanoparticle-Infused Cotton Fiber: Durability and Aqueous Release of Silver in Laundry Water. Journal of Agricultural and Food Chemistry, 2020, 68, 13231-13240.	2.4	16
22	Quantification and spatial resolution of silver nanoparticles in cotton textiles by surface-enhanced Raman spectroscopy (SERS). Journal of Nanoparticle Research, 2020, 22, 1.	0.8	12
23	Use of cottonseed protein as a strength additive for nonwoven cotton. Textile Reseach Journal, 2019, 89, 1725-1733.	1.1	13
24	Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge. Nanomaterials, 2019, 9, 1232.	1.9	41
25	Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose, 2019, 26, 5959-5979.	2.4	84
26	Nanocellulose as a colorimetric biosensor for effective and facile detection of human neutrophil elastase. Carbohydrate Polymers, 2019, 216, 360-368.	5.1	42
27	A reinforced thermal barrier coat of a Na–tannic acid complex from the view of thermal kinetics. RSC Advances, 2019, 9, 10914-10926.	1.7	24
28	The effect of cotton fiber inclusion on the hard surface cleaning capacity of nonwoven substrates. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501988962.	0.5	5
29	Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2019, 132, 989-999.	1.8	43
30	Thermally Induced Structural Transitions in Cotton Fiber Revealed by a Finite Mixture Model of Tenacity Distribution. ACS Sustainable Chemistry and Engineering, 2018, 6, 7420-7431.	3.2	1
31	The application of ultrasound and enzymes in textile processing of greige cotton. Ultrasonics, 2018, 84, 223-233.	2.1	20
32	Microwave Assisted Preparation of Flame Resistant Cotton Using Economic Inorganic Materials. Fibers, 2018, 6, 85.	1.8	5
33	Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria. RSC Advances, 2018, 8, 21937-21947.	1.7	15
34	Peptide-Cellulose Conjugates on Cotton-Based Materials Have Protease Sensor/Sequestrant Activity. Sensors, 2018, 18, 2334.	2.1	18
35	Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose. International Journal of Molecular Sciences, 2018, 19, 840.	1.8	21
36	The adsorption of alkyl-dimethyl-benzyl-ammonium chloride onto cotton nonwoven hydroentangled substrates at the solid–liquid interface is minimized by additive chemistries. Textile Reseach Journal, 2017, 87, 70-80.	1.1	16

#	Article	IF	CITATIONS
37	Intumescent flame-retardant cotton produced by tannic acid and sodium hydroxide. Journal of Analytical and Applied Pyrolysis, 2017, 126, 239-246.	2.6	67
38	Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: Implications of material selection for dressing and protease sensor design. Journal of Biomaterials Applications, 2017, 32, 622-637.	1.2	25
39	The comparison of phosphorus-nitrogen and sulfur-phosphorus-nitrogen on the anti-flammability and thermal degradation of cotton fabrics. Fibers and Polymers, 2017, 18, 666-674.	1.1	7
40	Non-Bleaching Heather Method for Improved Whiteness of Greige Cotton. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	0.5	0
41	Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials. Journal of Functional Biomaterials, 2017, 8, 9.	1.8	8
42	Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton. Sensors, 2016, 16, 1789.	2.1	41
43	Comparison of biodegradation of low-weight hydroentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in aerobic Captina silt loam soil. Textile Reseach Journal, 2016, 86, 155-166.	1.1	32
44	Human neutrophil elastase detection with fluorescent peptide sensors conjugated to cellulosic and nanocellulosic materials: part II, structure/function analysis. Cellulose, 2016, 23, 1297-1309.	2.4	29
45	The <i>GhTT2_A07</i> gene is linked to the brown colour and natural flame retardancy phenotypes of <i>Lc1</i> cotton (<i>Gossypium hirsutum</i> L.) fibres. Journal of Experimental Botany, 2016, 67, 5461-5471.	2.4	37
46	Human neutrophil elastase peptide sensors conjugated to cellulosic and nanocellulosic materials: part I, synthesis and characterization of fluorescent analogs. Cellulose, 2016, 23, 1283-1295.	2.4	24
47	High resistance to thermal decomposition in brown cotton is linked to tannins and sodium content. Cellulose, 2016, 23, 1137-1152.	2.4	23
48	Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose ll ² and cellulose II. Carbohydrate Polymers, 2016, 135, 1-9.	5.1	417
49	Understanding the Mechanism of Action of Triazine-Phosphonate Derivatives as Flame Retardants for Cotton Fabric. Molecules, 2015, 20, 11236-11256.	1.7	21
50	Physical and combustion properties of nonwoven fabrics produced from conventional and naturally colored cottons. Textile Reseach Journal, 2015, 85, 1666-1680.	1.1	14
51	Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride. Textile Reseach Journal, 2015, 85, 1221-1233.	1.1	10
52	Kinetic and structural analysis of fluorescent peptides on cotton cellulose nanocrystals as elastase sensors. Carbohydrate Polymers, 2015, 116, 278-285.	5.1	35
53	Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton. Journal of Functional Biomaterials, 2014, 5, 273-287.	1.8	10
54	Application of a Phosphazene Derivative as a Flame Retardant for Cotton Fabric using Conventional Method and Supercritical CO2. AATCC Journal of Research, 2014, 1, 16-26.	0.3	7

#	Article	IF	CITATIONS
55	A pilot-scale nonwoven roll goods manufacturing process reduces microbial burden to pharmacopeia acceptance levels for non-sterile hygiene applications. Textile Reseach Journal, 2014, 84, 546-558.	1.1	8
56	Preliminary evidence of oxidation in standard oven drying of cotton: attenuated total reflectance/Fourier transform infrared spectroscopy, colorimetry, and particulate matter formation. Textile Reseach Journal, 2014, 84, 157-173.	1.1	5
57	Decreased Immunoglobulin E (IgE) Binding to Cashew Allergens following Sodium Sulfite Treatment and Heating. Journal of Agricultural and Food Chemistry, 2014, 62, 6746-6755.	2.4	28
58	Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant. Journal of Analytical and Applied Pyrolysis, 2014, 110, 122-129.	2.6	25
59	Enhanced thermal and combustion resistance of cotton linked to natural inorganic salt components. Cellulose, 2014, 21, 791-802.	2.4	23
60	Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber. Cellulose, 2014, 21, 2963-2972.	2.4	30
61	Comparison of Soybean and Cottonseed Oils upon Hydrogenation with Nickel, Palladium and Platinum Catalysts. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1461-1469.	0.8	16
62	The comparison of differences in flammability and thermal degradation between cotton fabrics treated with phosphoramidate derivatives. Polymers for Advanced Technologies, 2014, 25, 665-672.	1.6	19
63	Surface Coating for Flame-Retardant Behavior of Cotton Fabric Using a Continuous Layer-by-Layer Process. Industrial & Engineering Chemistry Research, 2014, 53, 3805-3812.	1.8	129
64	Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose, 2013, 20, 1223-1235.	2.4	91
65	Structural Effect of Phosphoramidate Derivatives on the Thermal and Flame Retardant Behaviors of Treated Cotton Cellulose. Industrial & Engineering Chemistry Research, 2013, 52, 4715-4724.	1.8	97
66	Whiteness and absorbency of hydroentangled cotton-based nonwoven fabrics of different constituent fibers and fiber blends. World Journal of Engineering, 2013, 10, 125-132.	1.0	4
67	Effect of water pressure on absorbency of hydroentangled <i>greige</i> cotton non-woven fabrics. Textile Reseach Journal, 2012, 82, 21-26.	1.1	33
68	Antiflammable Properties of Capable Phosphorusâ´`Nitrogen-Containing Triazine Derivatives on Cotton. ACS Symposium Series, 2012, , 123-137.	0.5	5
69	Hydrogenation of Cottonseed Oil with Nickel, Palladium and Platinum Catalysts. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1557-1566.	0.8	18
70	Synthesis of a novel flame retardant containing phosphorus-nitrogen and its comparison for cotton fabric. Fibers and Polymers, 2012, 13, 963-970.	1.1	31
71	Enhanced Flame Retardant Property of Fiber Reactive Halogen-Free Organophosphonate. Industrial & Engineering Chemistry Research, 2012, 51, 11031-11037.	1.8	38
72	Synthesis and characterization of a novel phosphorus–nitrogen ontaining flame retardant and its application for textile. Polymers for Advanced Technologies, 2012, 23, 1036-1044.	1.6	46

#	Article	IF	CITATIONS
73	Development of an environmentally friendly halogenâ€free phosphorus–nitrogen bond flame retardant for cotton fabrics. Polymers for Advanced Technologies, 2012, 23, 1555-1563.	1.6	71
74	Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations. Cellulose, 2012, 19, 495-506.	2.4	61
75	Effect of web formation on properties of hydroentangled nonwoven fabrics. World Journal of Engineering, 2012, 9, 407-416.	1.0	5
76	Covalent attachment of lysozyme to cotton/cellulose materials: protein verses solid support activation. Cellulose, 2011, 18, 1239-1249.	2.4	36
77	Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution. Journal of Nanoparticle Research, 2011, 13, 3755-3764.	0.8	52
78	The Application of Ultrasound in the Enzymatic Hydrolysis of Switchgrass. Applied Biochemistry and Biotechnology, 2011, 165, 1322-1331.	1.4	36
79	Flame retardant properties of triazine phosphonates derivative with cotton fabric. Fibers and Polymers, 2011, 12, 334-339.	1.1	66
80	Intumescent Allâ€Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric. Advanced Materials, 2011, 23, 3926-3931.	11.1	311
81	Flame-Retardant Materials: Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric (Adv. Mater. 34/2011). Advanced Materials, 2011, 23, 3868-3868.	11.1	1
82	Analysis of 2â€Acetylâ€1â€Pyrroline in Rice by HSSE/GC/MS. Cereal Chemistry, 2011, 88, 271-277.	1.1	43
83	Preparation and characterization of aminobenzyl cellulose by two step synthesis from native cellulose. Fibers and Polymers, 2010, 11, 1101-1105.	1.1	9
84	Flame Retardant Behavior of Polyelectrolyteâ^'Clay Thin Film Assemblies on Cotton Fabric. ACS Nano, 2010, 4, 3325-3337.	7.3	394
85	Development of a Continuous Finishing Chemistry Process for Manufacture of a Phosphorylated Cotton Chronic Wound Dressing. Journal of Industrial Textiles, 2009, 39, 27-43.	1.1	12
86	Positively and negatively charged ionic modifications to cellulose assessed as cotton-based protease-lowering and hemostatic wound agents. Cellulose, 2009, 16, 911-921.	2.4	15
87	Acceleration of the Enzymatic Hydrolysis of Corn Stover and Sugar Cane Bagasse Celluloses by Low Intensity Uniform Ultrasound. Journal of Biobased Materials and Bioenergy, 2009, 3, 25-31.	0.1	125
88	A Bio-Sensor for Human Neutrophil Elastase Employs Peptide-p-Nitroanilide Cellulose Conjugates. Sensor Letters, 2008, 6, 518-523.	0.4	10
89	New Uses for Immobilized Enzymes and Substrates on Cotton and Cellulose Fibers. ACS Symposium Series, 2007, , 171-185.	0.5	2
90	Intensification of Enzymatic Reactions in Heterogeneous Systems by Low Intensity, Uniform Sonication: New Road to "Green Chemistry". ACS Symposium Series, 2007, , 137-156.	0.5	5

#	Article	IF	CITATIONS
91	Optimization for enzyme-retting of flax with pectate lyase. Industrial Crops and Products, 2007, 25, 136-146.	2.5	89
92	Retention of configuration in the desilylative hydroxyalkylation of α-silyl sulfides. Tetrahedron Letters, 1989, 30, 789-790.	0.7	30
93	Diastereoselective reactions of an acyclic $\hat{I}\pm$ -lithiated sulfide: A case of thermodynamic control. Tetrahedron Letters, 1988, 29, 2547-2550.	0.7	62
94	Catheter Infection. Annals of Surgery, 1988, 208, 651-653.	2.1	48
95	A convenient procedure for the monosilylation of symmetric 1,n-diols. Journal of Organic Chemistry, 1986, 51, 3388-3390.	1.7	229
96	An Assessment of Surface Properties and Moisture Uptake of Nonwoven Fabrics from Ginning By-products. , 0, , .		4