
Xiaofeng Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8111465/publications.pdf Version: 2024-02-01

XIAOFENC TANC

#	Article	IF	CITATIONS
1	Visualizing and Suppressing Nonradiative Losses in High Open-Circuit Voltage n-i-p-Type CsPbI ₃ Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 271-279.	17.4	39
2	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 2020, 11, 6328.	12.8	86
3	Electrical-Field-Driven Tunable Spectral Responses in a Broadband-Absorbing Perovskite Photodiode. ACS Applied Materials & Interfaces, 2019, 11, 39018-39025.	8.0	8
4	A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells. Energy and Environmental Science, 2019, 12, 1078-1087.	30.8	89
5	Assembling Mesoscale‧tructured Organic Interfaces in Perovskite Photovoltaics. Advanced Materials, 2019, 31, e1806516.	21.0	16
6	Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Letters, 2018, 18, 2172-2178.	9.1	186
7	Overcoming Microstructural Limitations in Water Processed Organic Solar Cells by Engineering Customized Nanoparticulate Inks. Advanced Energy Materials, 2018, 8, 1702857.	19.5	48
8	Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach. Advanced Energy Materials, 2018, 8, 1701543.	19.5	75
9	Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nature Communications, 2018, 9, 5335.	12.8	91
10	Time-Resolved Analysis of Dielectric Mirrors for Vapor Sensing. ACS Applied Materials & Interfaces, 2018, 10, 36398-36406.	8.0	21
11	Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nature Energy, 2018, 3, 1051-1058.	39.5	281
12	Efficient Organic Solar Cells with Extremely High Open ircuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	19.5	117
13	Single molecular precursor ink for AgBiS ₂ thin films: synthesis and characterization. Journal of Materials Chemistry C, 2018, 6, 7642-7651.	5.5	20
14	Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 23225-23234.	8.0	45
15	Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX ₃ (X) Tj ETQq1	10.7843 9.1	614_rgBT /0
16	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	3.7	57
17	Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. Journal of Materials Chemistry A, 2016, 4, 11604-11610.	10.3	49
18	Exploring the Limiting Openâ€Circuit Voltage and the Voltage Loss Mechanism in Planar CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600132.	19.5	71

#	Article	IF	CITATIONS
19	Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. Journal of Materials Chemistry A, 2016, 4, 15896-15903.	10.3	119
20	Deciphering the Role of Impurities in Methylammonium lodide and Their Impact on the Performance of Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600593.	3.7	31
21	Topography-dependent phase-segregation in mixed-halide perovskite. , 0, , .		0