Xiaofeng Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8111465/publications.pdf

Version: 2024-02-01

430874 752698 21 1,805 18 20 citations h-index g-index papers 21 21 21 3644 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX ₃ (X) Tj ETQq1	1.0.78431	14 rgBT /0vi
2	Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nature Energy, 2018, 3, 1051-1058.	39.5	281
3	Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Letters, 2018, 18, 2172-2178.	9.1	186
4	Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. Journal of Materials Chemistry A, 2016, 4, 15896-15903.	10.3	119
5	Efficient Organic Solar Cells with Extremely High Openâ€Circuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	19.5	117
6	Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nature Communications, 2018, 9, 5335.	12.8	91
7	A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells. Energy and Environmental Science, 2019, 12, 1078-1087.	30.8	89
8	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 2020, 11, 6328.	12.8	86
9	Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach. Advanced Energy Materials, 2018, 8, 1701543.	19.5	75
10	Exploring the Limiting Openâ€Circuit Voltage and the Voltage Loss Mechanism in Planar CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600132.	19.5	71
11	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	3.7	57
12	Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. Journal of Materials Chemistry A, 2016, 4, 11604-11610.	10.3	49
13	Overcoming Microstructural Limitations in Water Processed Organic Solar Cells by Engineering Customized Nanoparticulate Inks. Advanced Energy Materials, 2018, 8, 1702857.	19.5	48
14	Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23225-23234.	8.0	45
15	Visualizing and Suppressing Nonradiative Losses in High Open-Circuit Voltage n-i-p-Type CsPbI ₃ Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 271-279.	17.4	39
16	Deciphering the Role of Impurities in Methylammonium Iodide and Their Impact on the Performance of Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600593.	3.7	31
17	Time-Resolved Analysis of Dielectric Mirrors for Vapor Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36398-36406.	8.0	21
18	Single molecular precursor ink for AgBiS ₂ thin films: synthesis and characterization. Journal of Materials Chemistry C, 2018, 6, 7642-7651.	5.5	20

XIAOFENG TANG

#	Article	IF	CITATION
19	Assembling Mesoscaleâ€6tructured Organic Interfaces in Perovskite Photovoltaics. Advanced Materials, 2019, 31, e1806516.	21.0	16
20	Electrical-Field-Driven Tunable Spectral Responses in a Broadband-Absorbing Perovskite Photodiode. ACS Applied Materials & Electrical Responses in a Broadband-Absorbing Perovskite Photodiode.	8.0	8
21	Topography-dependent phase-segregation in mixed-halide perovskite. , 0, , .		O