
Andrew deMello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8111343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control and detection of chemical reactions in microfluidic systems. Nature, 2006, 442, 394-402.	13.7	1,407
2	The past, present and potential for microfluidic reactor technology in chemical synthesis. Nature Chemistry, 2013, 5, 905-915.	6.6	978
3	Microdroplets: A sea of applications?. Lab on A Chip, 2008, 8, 1244.	3.1	579
4	Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Letters, 2016, 16, 1869-1877.	4.5	425
5	Quantitative detection of protein expression in single cells using droplet microfluidics. Chemical Communications, 2007, , 1218.	2.2	326
6	Pillar-induced droplet merging in microfluidic circuits. Lab on A Chip, 2008, 8, 1837.	3.1	314
7	Droplet microfluidics: recent developments and future applications. Chemical Communications, 2011, 47, 1936-1942.	2.2	296
8	Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences. CheM, 2017, 2, 201-223.	5.8	278
9	Intelligent routes to the controlled synthesis of nanoparticles. Lab on A Chip, 2007, 7, 1434.	3.1	258
10	Microfluidic routes to the controlled production of nanoparticlesElectronic supplementary information ESI available: image of the central portion of the micromixer chip. See http://www.rsc.org/suppdata/cc/b2/b202998g/. Chemical Communications, 2002, , 1136-1137.	2.2	248
11	Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets. Analytical Chemistry, 2009, 81, 302-306.	3.2	240
12	Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 2018, 11, 13-21.	2.3	193
13	Recent Advances in Droplet Microfluidics. Analytical Chemistry, 2020, 92, 132-149.	3.2	189
14	A microdroplet dilutor for high-throughput screening. Nature Chemistry, 2011, 3, 437-442.	6.6	174
15	In vitro gene expression within membrane-free coacervate protocells. Chemical Communications, 2015, 51, 11429-11432.	2.2	161
16	Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab on A Chip, 2016, 16, 1022-1029.	3.1	151
17	Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. ACS Nano, 2018, 12, 5504-5517.	7.3	138
18	Nanocrystal synthesis in microfluidic reactors: where next?. Lab on A Chip, 2014, 14, 3172.	3.1	137

#	Article	IF	CITATIONS
19	High-Throughput DNA Droplet Assays Using Picoliter Reactor Volumes. Analytical Chemistry, 2007, 79, 6682-6689.	3.2	134
20	On-line analysis of CdSe nanoparticle formation in a continuous flow chip-based microreactor. Journal of Materials Chemistry, 2004, 14, 2655.	6.7	132
21	Droplet-based microfluidics for artificial cell generation: a brief review. Interface Focus, 2016, 6, 20160011.	1.5	119
22	Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures. Chemical Society Reviews, 2018, 47, 3788-3803.	18.7	119
23	Soil-on-a-Chip: microfluidic platforms for environmental organismal studies. Lab on A Chip, 2016, 16, 228-241.	3.1	115
24	Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor. Journal of Materials Chemistry, 2012, 22, 4704.	6.7	111
25	Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. Nano Letters, 2018, 18, 1246-1252.	4.5	106
26	Ultrafast Surface Enhanced Resonance Raman Scattering Detection in Droplet-Based Microfluidic Systems. Analytical Chemistry, 2011, 83, 3076-3081.	3.2	103
27	Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth. Accounts of Chemical Research, 2017, 50, 1248-1257.	7.6	103
28	High-throughput microfluidic imaging flow cytometry. Current Opinion in Biotechnology, 2019, 55, 36-43.	3.3	98
29	Droplet microfluidics: from proof-of-concept to real-world utility?. Chemical Communications, 2019, 55, 9895-9903.	2.2	93
30	High-Throughput Analysis of Protein–Protein Interactions in Picoliter-Volume Droplets Using Fluorescence Polarization. Analytical Chemistry, 2012, 84, 3849-3854.	3.2	87
31	Facile Droplet-based Microfluidic Synthesis of Monodisperse IV–VI Semiconductor Nanocrystals with Coupled In-Line NIR Fluorescence Detection. Chemistry of Materials, 2014, 26, 2975-2982.	3.2	87
32	A Fully Unsupervised Compartment-on-Demand Platform for Precise Nanoliter Assays of Time-Dependent Steady-State Enzyme Kinetics and Inhibition. Analytical Chemistry, 2013, 85, 4761-4769.	3.2	85
33	Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosensors and Bioelectronics, 2015, 72, 230-236.	5.3	84
34	Bidirectional Propagation of Signals and Nutrients in Fungal Networks via Specialized Hyphae. Current Biology, 2019, 29, 217-228.e4.	1.8	82
35	Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 8433-8439.	3.2	81
36	Pick a Color MARIA: Adaptive Sampling Enables the Rapid Identification of Complex Perovskite Nanocrystal Compositions with Defined Emission Characteristics. ACS Applied Materials & Interfaces, 2018, 10, 18869-18878.	4.0	78

#	Article	IF	CITATIONS
37	Chemical and Biological Dynamics Using Droplet-Based Microfluidics. Annual Review of Analytical Chemistry, 2017, 10, 1-24.	2.8	77
38	Hydrodynamics in Cell Studies. Chemical Reviews, 2018, 118, 2042-2079.	23.0	75
39	Rapid cell extraction in aqueous two-phase microdroplet systems. Chemical Science, 2010, 1, 447.	3.7	73
40	Microfluidic Formation of Membraneâ€Free Aqueous Coacervate Droplets in Water. Angewandte Chemie - International Edition, 2015, 54, 8398-8401.	7.2	73
41	High-Throughput Multi-parametric Imaging Flow Cytometry. CheM, 2017, 3, 588-602.	5.8	71
42	An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chemical Science, 2021, 12, 12733-12743.	3.7	71
43	Millisecondâ€Timescale Monitoring of PbS Nanoparticle Nucleation and Growth Using Dropletâ€Based Microfluidics. Small, 2015, 11, 4009-4017.	5.2	69
44	Combinatorial microfluidic droplet engineering for biomimetic material synthesis. Science Advances, 2016, 2, e1600567.	4.7	67
45	An Exonuclease I-Assisted Silver-Metallized Electrochemical Aptasensor for Ochratoxin A Detection. ACS Sensors, 2019, 4, 1560-1568.	4.0	64
46	Biodegradable Metal–Organic Frameworkâ€Based Microrobots (MOFBOTs). Advanced Healthcare Materials, 2020, 9, e2001031.	3.9	64
47	Role of electron injection in polyfluorene-based light emitting diodes containing PEDOT:PSS. Physical Review B, 2005, 71, .	1.1	58
48	Reinforcement Learning for Dynamic Microfluidic Control. ACS Omega, 2018, 3, 10084-10091.	1.6	58
49	Efficient flexible polymer light emitting diodes with conducting polymer anodes. Journal of Materials Chemistry, 2007, 17, 3551.	6.7	56
50	Oscillatory Viscoelastic Microfluidics for Efficient Focusing and Separation of Nanoscale Species. ACS Nano, 2020, 14, 422-433.	7.3	56
51	Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 2020, 5, 2701-2723.	4.0	56
52	Droplet-Based Microfluidic Platform for High-Throughput, Multi-Parameter Screening of Photosensitizer Activity. Analytical Chemistry, 2013, 85, 8866-8872.	3.2	53
53	Nanomaterials for molecular signal amplification in electrochemical nucleic acid biosensing: recent advances and future prospects for point-of-care diagnostics. Molecular Systems Design and Engineering, 2020, 5, 49-66.	1.7	53
54	Fluorometric Paper-Based, Loop-Mediated Isothermal Amplification Devices for Quantitative Point-of-Care Detection of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). ACS Sensors, 2021, 6, 742-751.	4.0	53

#	Article	IF	CITATIONS
55	Scalable production of CuInS ₂ /ZnS quantum dots in a two-step droplet-based microfluidic platform. Journal of Materials Chemistry C, 2016, 4, 6401-6408.	2.7	50
56	3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy. Nature Communications, 2021, 12, 2583.	5.8	50
57	Generation of Chemical Movies: FT-IR Spectroscopic Imaging of Segmented Flows. Analytical Chemistry, 2011, 83, 3606-3609.	3.2	49
58	Microfluidic Synthesis of Luminescent and Plasmonic Nanoparticles: Fast, Efficient, and Dataâ€Rich. Advanced Materials Technologies, 2020, 5, .	3.0	49
59	Mapping of Fluidic Mixing in Microdroplets with 1 μs Time Resolution Using Fluorescence Lifetime Imaging. Analytical Chemistry, 2010, 82, 3950-3956.	3.2	47
60	High-throughput multiparametric imaging flow cytometry: toward diffraction-limited sub-cellular detection and monitoring of sub-cellular processes. Cell Reports, 2021, 34, 108824.	2.9	47
61	Microfluidic formation of proteinosomes. Chemical Communications, 2018, 54, 287-290.	2.2	46
62	Fast and Reliable Metamodeling of Complex Reaction Spaces Using Universal Kriging. Journal of Physical Chemistry C, 2014, 118, 20026-20033.	1.5	45
63	3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation. Analytical Chemistry, 2015, 87, 10770-10778.	3.2	45
64	Online detection and automation methods in microfluidic nanomaterial synthesis. Current Opinion in Chemical Engineering, 2015, 8, 29-35.	3.8	44
65	Differential detection photothermal spectroscopy: towards ultra-fast and sensitive label-free detection in picoliter & amp; femtoliter droplets. Lab on A Chip, 2017, 17, 3654-3663.	3.1	44
66	Integrated hand-powered centrifugation and paper-based diagnosis with blood-in/answer-out capabilities. Biosensors and Bioelectronics, 2020, 165, 112282.	5.3	44
67	Calcium carbonate polymorph control using droplet-based microfluidics. Biomicrofluidics, 2012, 6, 22001-2200110.	1.2	43
68	Microfluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella. Micromachines, 2016, 7, 25.	1.4	43
69	Elasto-Inertial Focusing of Mammalian Cells and Bacteria Using Low Molecular, Low Viscosity PEO Solutions. Analytical Chemistry, 2017, 89, 11653-11663.	3.2	43
70	High-Throughput, Quantitative Enzyme Kinetic Analysis in Microdroplets Using Stroboscopic Epifluorescence Imaging. Analytical Chemistry, 2015, 87, 4965-4972.	3.2	42
71	From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis. Microfluidics and Nanofluidics, 2017, 21, 58.	1.0	42
72	An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry. Lab on A Chip, 2018, 18, 3631-3637.	3.1	42

#	Article	IF	CITATIONS
73	Integrated SERS-Based Microdroplet Platform for the Automated Immunoassay of F1 Antigens in <i>Yersinia pestis</i> . Analytical Chemistry, 2017, 89, 8413-8420.	3.2	41
74	Kinetics of nanocrystal synthesis in a microfluidic reactor: theory and experiment. Reaction Chemistry and Engineering, 2016, 1, 261-271.	1.9	39
75	A High-Sensitivity, Integrated Absorbance and Fluorescence Detection Scheme for Probing Picoliter-Volume Droplets in Segmented Flows. Analytical Chemistry, 2017, 89, 12880-12887.	3.2	39
76	Building droplet-based microfluidic systems for biological analysis. Biochemical Society Transactions, 2012, 40, 615-623.	1.6	38
77	A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Analytical and Bioanalytical Chemistry, 2018, 410, 7019-7030.	1.9	37
78	A Nano LC-MALDI Mass Spectrometry Droplet Interface for the Analysis of Complex Protein Samples. PLoS ONE, 2013, 8, e63087.	1.1	36
79	Liquid repellency enhancement through flexible microstructures. Science Advances, 2020, 6, eaba9721.	4.7	35
80	Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs. Acta Biomaterialia, 2017, 64, 137-147.	4.1	33
81	Microfluidic Tools for Bottom-Up Synthetic Cellularity. CheM, 2019, 5, 1727-1742.	5.8	33
82	Microfluidics for extracellular vesicle separation and mimetic synthesis: Recent advances and future perspectives. Chemical Engineering Journal, 2021, 404, 126110.	6.6	33
83	Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118823.	1.9	33
84	High-Efficiency Single-Molecule Detection within Trapped Aqueous Microdroplets. Journal of Physical Chemistry B, 2010, 114, 15766-15772.	1.2	32
85	Growing and Shaping Metal–Organic Framework Single Crystals at the Millimeter Scale. Journal of the American Chemical Society, 2020, 142, 9372-9381.	6.6	32
86	In-vitro and in-vivo characterization of CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of amyloid-beta deposits in Alzheimer mice. Photoacoustics, 2021, 23, 100285.	4.4	32
87	Microfluidic generation of PEG-b-PLA polymersomes containing alginate-based core hydrogel. Biomicrofluidics, 2015, 9, 024101.	1.2	31
88	Influence of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in polymer LEDs. Physical Review B, 2006, 74, .	1.1	30
89	Long-term <i>C. elegans</i> immobilization enables high resolution developmental studies <i>in vivo</i> . Lab on A Chip, 2018, 18, 1359-1368.	3.1	30
90	Replicating the <i>Cynandra opis</i> Butterfly's Structural Color for Bioinspired Bigrating Color Filters. Advanced Materials, 2022, 34, e2109161.	11.1	30

#	Article	IF	CITATIONS
91	The effect of growth temperature on physical properties of heavily doped ZnO:Al films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 697-703.	0.8	27
92	Deformation of leukaemia cell lines in hyperbolic microchannels: investigating the role of shear and extensional components. Lab on A Chip, 2020, 20, 2539-2548.	3.1	27
93	Exploring mechanism of enzyme catalysis by on-chip transient kinetics coupled with global data analysis and molecular modeling. CheM, 2021, 7, 1066-1079.	5.8	27
94	Automated microfluidic screening of ligand interactions during the synthesis of cesium lead bromide nanocrystals. Molecular Systems Design and Engineering, 2020, 5, 1118-1130.	1.7	26
95	Controllable generation and encapsulation of alginate fibers using droplet-based microfluidics. Lab on A Chip, 2016, 16, 59-64.	3.1	23
96	A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosensors and Bioelectronics, 2015, 67, 497-502.	5.3	22
97	Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients. Advanced Materials, 2016, 28, 8150-8155.	11.1	22
98	Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis. Scientific Reports, 2017, 7, 1211.	1.6	22
99	Biotemplating of Metal–Organic Framework Nanocrystals for Applications in Small cale Robotics. Advanced Functional Materials, 2022, 32, .	7.8	21
100	A Microfluidic Platform for the Rapid Determination of Distribution Coefficients by Gravity-Assisted Droplet-Based Liquid–Liquid Extraction. Analytical Chemistry, 2015, 87, 6265-6270.	3.2	20
101	A droplet-based microfluidic immunosensor for high efficiency melamine analysis. Biosensors and Bioelectronics, 2016, 80, 182-186.	5.3	20
102	Microfluidic-based imaging of complete <i>Caenorhabditis elegans</i> larval development. Development (Cambridge), 2021, 148, .	1.2	19
103	Clinical validation of surface-enhanced Raman scattering-based immunoassays in the early diagnosis of rheumatoid arthritis. Analytical and Bioanalytical Chemistry, 2015, 407, 8353-8362.	1.9	18
104	Fluoropolymer oated PDMS Microfluidic Devices for Application in Organic Synthesis. Chemistry - A European Journal, 2018, 24, 12078-12083.	1.7	18
105	Integrated pneumatic micro-pumps for high-throughput droplet-based microfluidics. RSC Advances, 2014, 4, 20341-20345.	1.7	17
106	SERS Barcode Libraries: A Microfluidic Approach. Advanced Science, 2020, 7, 1903172.	5.6	17
107	In Situ Nucleic Acid Amplification and Ultrasensitive Colorimetric Readout in a Paperâ€Based Analytical Device Using Silver Nanoplates. Advanced Healthcare Materials, 2021, 10, e2001755.	3.9	17
108	A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics. Cell Reports Methods, 2021, 1, 100094.	1.4	17

#	Article	IF	CITATIONS
109	Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents. Journal of Chromatography A, 2016, 1440, 31-36.	1.8	16
110	In Situ X-ray Absorption Spectroscopy and Droplet-Based Microfluidics: An Analysis of Calcium Carbonate Precipitation. ACS Measurement Science Au, 2021, 1, 27-34.	1.9	16
111	Broad-Band Spectrum, High-Sensitivity Absorbance Spectroscopy in Picoliter Volumes. Analytical Chemistry, 2021, 93, 7673-7681.	3.2	15
112	A microfluidic toolbox for cell fusion. Journal of Chemical Technology and Biotechnology, 2016, 91, 16-24.	1.6	14
113	Acoustic Compressibility of Caenorhabditis elegans. Biophysical Journal, 2018, 115, 1817-1825.	0.2	14
114	An ultrasensitive non-noble metal colorimetric assay using starch-iodide complexation for Ochratoxin A detection. Analytica Chimica Acta, 2020, 1135, 29-37.	2.6	14
115	Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures. ACS Applied Materials & Interfaces, 2021, 13, 31310-31319.	4.0	14
116	A Counter Propagating Lensâ€Mirror System for Ultrahigh Throughput Single Droplet Detection. Small, 2020, 16, e1907534.	5.2	13
117	Precision tuning of rare-earth-doped upconversion nanoparticles via droplet-based microfluidic screening. Journal of Materials Chemistry C, 2021, 9, 925-933.	2.7	13
118	Optical-Switch-Enabled Microfluidics for Sensitive Multichannel Colorimetric Analysis. Analytical Chemistry, 2021, 93, 6784-6791.	3.2	13
119	Microfluidicâ€Assisted Blade Coating of Compositional Libraries for Combinatorial Applications: The Case of Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 2001308.	10.2	12
120	Enhanced versatility of fluid control in centrifugal microfluidic platforms using two degrees of freedom. Lab on A Chip, 2016, 16, 1197-1205.	3.1	11
121	Streptavidin-triggered signal amplified fluorescence polarization for analysis of DNA–protein interactions. Analyst, The, 2016, 141, 6499-6502.	1.7	10
122	A Photothermal Spectrometer for Fast and Background-Free Detection of Individual Nanoparticles in Flow. Analytical Chemistry, 2017, 89, 1994-1999.	3.2	10
123	Inâ€Flow MOF Lithography. Advanced Materials Technologies, 2019, 4, 1800666.	3.0	10
124	Reactive Gelation Synthesis of Monodisperse Polymeric Capsules Using Dropletâ€Based Microfluidics. Advanced Materials Technologies, 2019, 4, 1900092.	3.0	9
125	Self-Compensating Liquid-Repellent Surfaces with Stratified Morphology. ACS Applied Materials & Interfaces, 2020, 12, 4174-4182.	4.0	9
126	Tuning DNA–nanoparticle conjugate properties allows modulation of nuclease activity. Nanoscale, 2021, 13, 4956-4970.	2.8	9

#	Article	IF	CITATIONS
127	Realâ€Time PEGDAâ€Based Microgel Generation and Encapsulation in Microdroplets. Advanced Materials Technologies, 2016, 1, 1600028.	3.0	8
128	Integration of Inverse Supercritical Fluid Extraction and Miniaturized Asymmetrical Flow Field-Flow Fractionation for the Rapid Analysis of Nanoparticles in Sunscreens. Analytical Chemistry, 2018, 90, 3189-3195.	3.2	8
129	Flexibility-Patterned Liquid-Repelling Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 29092-29100.	4.0	8
130	Stochastic and Ageâ€Dependent Proteostasis Decline Underlies Heterogeneity in Heatâ€Shock Response Dynamics. Small, 2021, 17, e2102145.	5.2	8
131	Reciprocal EGFR signaling in the anchor cell ensures precise inter-organ connection during <i>Caenorhabditis elegans</i> vulval morphogenesis. Development (Cambridge), 2022, 149, .	1.2	8
132	Multi-compartment supracapsules made from nano-containers towards programmable release. Materials Horizons, 2022, 9, 1641-1648.	6.4	8
133	Integration of monolithic porous polymer with droplet-based microfluidics on a chip for nano/picoliter volume sample analysis. Nano Convergence, 2014, 1, 3.	6.3	7
134	Continuous and low error-rate passive synchronization of pre-formed droplets. RSC Advances, 2015, 5, 48399-48405.	1.7	7
135	Pathway selection as a tool for crystal defect engineering: A case study with a functional coordination polymer. Applied Materials Today, 2020, 20, 100632.	2.3	7
136	Laminar Flow-Based Fiber Fabrication and Encoding via Two-Photon Lithography. ACS Applied Materials & Interfaces, 2020, 12, 54068-54074.	4.0	6
137	Pseudomonas Strains Induce Transcriptional and Morphological Changes and Reduce Root Colonization of Verticillium spp Frontiers in Microbiology, 2021, 12, 652468.	1.5	6
138	Facile tuning of the mechanical properties of a biocompatible soft material. Scientific Reports, 2019, 9, 7125.	1.6	4
139	Open Space Diffusive Filter for Simultaneous Species Retrieval and Separation. Analytical Chemistry, 2020, 92, 11548-11552.	3.2	4
140	Microfluidic Pneumatic Cages: A Novel Approach for In-chip Crystal Trapping, Manipulation and Controlled Chemical Treatment. Journal of Visualized Experiments, 2016, , .	0.2	3
141	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. Journal of Visualized Experiments, 2017, , .	0.2	3
142	Microfluidics. Advanced Materials Technologies, 2019, 4, 1900418.	3.0	2
143	Sensors Around the World: Europe, Middle East, and Africa. ACS Sensors, 2021, 6, 4269-4271.	4.0	2
	Draplate Constration Mathed for Water in Oil State in the Deludimethyleilovane Microchannel with		

1

#	Article	IF	CITATIONS
145	Microcapsules: Reactive Gelation Synthesis of Monodisperse Polymeric Capsules Using Dropletâ€Based Microfluidics (Adv. Mater. Technol. 6/2019). Advanced Materials Technologies, 2019, 4, 1970032.	3.0	1
146	Long-armed hexapod nanocrystals of cesium lead bromide. Nanoscale, 2020, 12, 14808-14817.	2.8	1
147	Millisecond Kinetics of PbS Quantum Dots Using Droplet-based Microfluidics with On-line Absorption and Fluorescence Spectroscopy. Materials Research Society Symposia Proceedings, 2015, 1780, 1.	0.1	0
148	Metal–Organic Frameworks: Inâ€Flow MOF Lithography (Adv. Mater. Technol. 6/2019). Advanced Materials Technologies, 2019, 4, 1970035.	3.0	0
149	Microfluidics: Microfluidic Synthesis of Luminescent and Plasmonic Nanoparticles: Fast, Efficient, and Dataâ€Rich (Adv. Mater. Technol. 7/2020). Advanced Materials Technologies, 2020, 5, 2070045.	3.0	0
150	Single Droplet Detection: A Counter Propagating Lensâ€Mirror System for Ultrahigh Throughput Single Droplet Detection (Small 20/2020). Small, 2020, 16, 2070112.	5.2	0
151	Microfluidics: Stochastic and Ageâ€Dependent Proteostasis Decline Underlies Heterogeneity in Heatâ€Shock Response Dynamics (Small 30/2021). Small, 2021, 17, 2170157.	5.2	0
152	To Print, or Not to Print, That Is the Question. ACS Sensors, 2021, 6, 3494-3495.	4.0	0