Vanessa Desantis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110909/publications.pdf

Version: 2024-02-01

567144 552653 29 908 15 26 citations h-index g-index papers 32 32 32 1497 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget, 2016, 7, 60698-60711.	0.8	137
2	Bone marrow fibroblasts overexpress miRâ€27b and miRâ€214 in step with multiple myeloma progression, dependent on tumour cellâ€derived exosomes. Journal of Pathology, 2019, 247, 241-253.	2.1	74
3	Halting pro-survival autophagy by $TGF\hat{l}^2$ inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients. Leukemia, 2016, 30, 640-648.	3.3	69
4	Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells, 2020, 9, 167.	1.8	68
5	Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Translational Oncology, 2018, 11, 1350-1357.	1.7	56
6	JAM-A as a prognostic factor and new therapeutic target in multiple myeloma. Leukemia, 2018, 32, 736-743.	3.3	55
7	High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. Journal of Clinical Medicine, 2019, 8, 997.	1.0	45
8	Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma. Oncotarget, 2018, 9, 20563-20577.	0.8	45
9	MicroRNAs-Based Nano-Strategies as New Therapeutic Approach in Multiple Myeloma to Overcome Disease Progression and Drug Resistance. International Journal of Molecular Sciences, 2020, 21, 3084.	1.8	42
10	FGF Trapping Inhibits Multiple Myeloma Growth through c-Myc Degradation–Induced Mitochondrial Oxidative Stress. Cancer Research, 2020, 80, 2340-2354.	0.4	41
11	The role of SIRT6 in tumors. Haematologica, 2018, 103, 1-4.	1.7	39
12	Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin® protein MP0250: a preclinical study. Oncotarget, 2018, 9, 13366-13381.	0.8	37
13	Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path?. Antioxidants, 2021, 10, 1257.	2.2	29
14	Homotypic and Heterotypic Activation of the Notch Pathway in Multiple Myeloma–Enhanced Angiogenesis: A Novel Therapeutic Target?. Neoplasia, 2019, 21, 93-105.	2.3	28
15	Myeloma cells act as tolerogenic antigenâ€presenting cells and induce regulatory <scp>T</scp> cells <i>iin vitro</i> . European Journal of Haematology, 2015, 95, 65-74.	1.1	17
16	Role of Extracellular Vesicle-Based Cell-to-Cell Communication in Multiple Myeloma Progression. Cells, 2021, 10, 3185.	1.8	16
17	Myeloma cells regulate <scp>miRNA</scp> transfer from fibroblastâ€derived exosomes by expression of <scp>lncRNAs</scp> . Journal of Pathology, 2022, 256, 402-413.	2.1	15
18	The Leading Role of the Immune Microenvironment in Multiple Myeloma: A New Target with a Great Prognostic and Clinical Value. Journal of Clinical Medicine, 2022, 11, 2513.	1.0	15

#	Article	IF	CITATIONS
19	Belimumab restores Treg/Th17 balance in patients with refractory systemic lupus erythematosus. Lupus, 2018, 27, 1926-1935.	0.8	14
20	Rhu-Epo down-regulates pro-tumorigenic activity of cancer-associated fibroblasts in multiple myeloma. Annals of Hematology, 2018, 97, 1251-1258.	0.8	13
21	MicroRNAs as a Potential New Preventive Approach in the Transition from Asymptomatic to Symptomatic Multiple Myeloma Disease. Cancers, 2021, 13, 3650.	1.7	13
22	Isolation and characterization of neural stem cells from dystrophic mdx mouse. Experimental Cell Research, 2016, 343, 190-207.	1.2	12
23	Thrombopoietin Promotes Angiogenesis and Disease Progression in Patients with Multiple Myeloma. American Journal of Pathology, 2021, 191, 748-758.	1.9	9
24	The Landscape of IncRNAs in Multiple Myeloma: Implications in the "Hallmarks of Cancerâ€; Clinical Perspectives and Therapeutic Opportunities. Cancers, 2022, 14, 1963.	1.7	9
25	A Challenging Case of Visceral Leishmaniasis. Reports, 2022, 5, 23.	0.2	3
26	Abstract B134: Inhibition of the fibroblast growth factor system by a new FGF trap induces oxidative stress and mitochondrial apoptosis in multiple myeloma cells. , 2018, , .		0
27	Abstract C052: FGF trapping impairs multiple myeloma growth through c-Myc degradation-induced mitochondrial oxidative stress. , 2019, , .		0
28	P-078: Prognostic value of immune cells in the multiple myeloma bone marrow microenvironment: a meta-analysis within silico and in vitro validation. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S81-S82.	0.2	0
29	Antiangiogenic drugs as chemosensitizers in hematological tumors. , 2022, , 111-125.		0