Johannes J Glöckler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110432/publications.pdf

Version: 2024-02-01

10	00	1478505	1588992
10	92	6	8
papers	citations	h-index	g-index
10	10	10	86
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Frontiers in Volatile Organic Compound Exhaled Breath Sensing. , 2022, , .		О
2	Overview on VOGAS: an instrument combining two gas sensing techniques for disease diagnosis. , 2022, , .		1
3	Modular Breath Analyzer (MBA): Introduction of a Breath Analyzer Platform Based on an Innovative and Unique, Modular eNose Concept for Breath Diagnostics and Utilization of Calibration Transfer Methods in Breath Analysis Studies. Molecules, 2021, 26, 3776.	3.8	4
4	An eNose-based method performing drift correction for online VOC detection under dry and humid conditions. Analytical Methods, 2020, 12, 4724-4733.	2.7	16
5	Characterization of metal oxide gas sensors via optical techniques. Analytical and Bioanalytical Chemistry, 2020, 412, 4575-4584.	3.7	10
6	iHWG-MOX: A Hybrid Breath Analysis System via the Combination of Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Metal Oxide Gas Sensors. ACS Sensors, 2020, 5, 1033-1039.	7.8	19
7	An Innovative Modular eNose System Based on a Unique Combination of Analog and Digital Metal Oxide Sensors. ACS Sensors, 2019, 4, 2277-2281.	7.8	22
8	A Novel Modular System for Breath Analysis Using Temperature Modulated MOX Sensors. Proceedings (mdpi), 2019, 14, .	0.2	8
9	Expansion of the scope of alkylboryl-bridged N â†' B-ladder boranes: new substituents and alternative substrates. Dalton Transactions, 2019, 48, 10298-10312.	3.3	5
10	A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis. Proceedings (mdpi), 2018, 2, .	0.2	7