
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment. Geoscientific Model Development, 2022, 15, 2265-2292.	3.6	22
2	The South Atlantic sub-tropical dipole mode since the last deglaciation and changes in rainfall. Climate Dynamics, 2021, 56, 109-122.	3.8	8
3	Changes in the equatorial mode of the Tropical Atlantic in terms of the Bjerknes Feedback Index. Climate Dynamics, 2021, 56, 3005-3024.	3.8	7
4	Increased Amazon Basin wet-season precipitation and river discharge since the early 1990s driven by tropical Pacific variability. Environmental Research Letters, 2021, 16, 034033.	5.2	5
5	Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble. Atmospheric Chemistry and Physics, 2021, 21, 3317-3343.	4.9	33
6	Changes in summer precipitation variability in central Brazil over the past eight decades. International Journal of Climatology, 2021, 41, 4171-4186.	3.5	10
7	Causes of the long-term variability of southwestern South America precipitation in the IPSL-CM6A-LR model. Climate Dynamics, 2021, 57, 2391-2414.	3.8	3
8	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	12.6	92
9	Disentangling Internal and External Contributions to Atlantic Multidecadal Variability Over the Past Millennium. Geophysical Research Letters, 2021, 48, e2021GL095990.	4.0	17
10	Reconstructing climatic modes of variability from proxy records using ClimIndRec version 1.0. Geoscientific Model Development, 2020, 13, 841-858.	3.6	10
11	Presentation and Evaluation of the IPSLâ€CM6A‣R Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002010.	3.8	541
12	Contributions of Internal Variability and External Forcing to the Recent Trends in the Southeastern Pacific and Peru–Chile Upwelling System. Journal of Climate, 2020, 33, 10555-10578.	3.2	8
13	Implementation of the CMIP6 Forcing Data in the IPSLâ€CM6A‣R Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001940.	3.8	95
14	IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations. Geoscientific Model Development, 2020, 13, 3011-3053.	3.6	55
15	Modern drought conditions in western Sahel unprecedented in the past 1600Âyears. Climate Dynamics, 2019, 52, 1949-1964.	3.8	13
16	Global ocean heat content redistribution during the 1998–2012 Interdecadal Pacific Oscillation negative phase. Climate Dynamics, 2019, 53, 1187-1208.	3.8	17
17	Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt.ÂTambora. Atmospheric Chemistry and Physics, 2018, 18, 2307-2328.	4.9	41
18	Spatiotemporal Variability of the South Pacific Convergence Zone Fresh Pool Eastern Front from Coral-Derived Surface Salinity Data. Journal of Climate, 2018, 31, 3265-3288.	3.2	10

#	Article	IF	CITATIONS
19	Atlantic Control of the Late Nineteenth-Century Sahel Humid Period. Journal of Climate, 2018, 31, 8225-8240.	3.2	20
20	A Subsurface Indian Ocean Dipole Response to Tropical Volcanic Eruptions. Geophysical Research Letters, 2018, 45, 9150-9159.	4.0	8
21	Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nature Geoscience, 2017, 10, 123-128.	12.9	130
22	Impact of explosive volcanic eruptions on the main climate variability modes. Global and Planetary Change, 2017, 150, 24-45.	3.5	88
23	A new record of Atlantic sea surface salinity from 1896 to 2013 reveals the signatures of climate variability and longâ€ŧerm trends. Geophysical Research Letters, 2017, 44, 1866-1876.	4.0	51
24	Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 2017, 8, 778.	12.8	132
25	Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth and Planetary Science Letters, 2017, 476, 1-10.	4.4	30
26	The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 <i>past1000</i> simulations. Geoscientific Model Development, 2017, 10, 4005-4033.	3.6	155
27	Toward predicting volcanically-forced decadal climate variability. Past Clobal Change Magazine, 2017, 25, 25-31.	0.1	1
28	Saving Our Marine Archives. Eos, 2017, , .	0.1	3
29	The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geoscientific Model Development, 2016, 9, 2701-2719.	3.6	138
30	Elucidating the climate and topographic controls on stable isotope composition of meteoric waters in Morocco, using station-based and spatially-interpolated data. Journal of Hydrology, 2016, 543, 305-315.	5.4	29
31	Evaluation of the inter-annual variability of stratospheric chemical composition in chemistry-climate models using ground-based multi species time series. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 145, 61-84.	1.6	6
32	A complete hydro-climate model chain to investigate the influence of sea surface temperature on recent hydroclimatic variability in subtropical South America (Laguna Mar Chiquita, Argentina). Climate Dynamics, 2016, 46, 1783-1798.	3.8	6
33	Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nature Communications, 2015, 6, 6545.	12.8	101
34	Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience, 2015, 8, 784-788.	12.9	220
35	Le climat du dernier millénaire. La Météorologie, 2015, 8, 36.	0.5	3
36	Hydroclimate variability of the northwestern Amazon Basin near the Andean foothills of Peru related to the South American Monsoon System during the last 1600 years. Climate of the Past, 2014, 10, 1967-1981.	3.4	67

#	Article	IF	CITATIONS
37	A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature, 2014, 513, 224-228.	27.8	84
38	Labrador current variability over the last 2000 years. Earth and Planetary Science Letters, 2014, 400, 26-32.	4.4	49
39	Reconstruction of the South Atlantic Subtropical Dipole index for the past 12,000 years from surface temperature proxy. Scientific Reports, 2014, 4, 5291.	3.3	22
40	Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model—part I: comparing IPSL_CM5A to IPSL_CM4. Climate Dynamics, 2013, 40, 2447-2468.	3.8	88
41	Mid-Holocene and last glacial maximum climate simulations with the IPSL model: part II: model-data comparisons. Climate Dynamics, 2013, 40, 2469-2495.	3.8	53
42	Mechanisms of Mid-Holocene Precipitation Change in the South Pacific Convergence Zone. Journal of Climate, 2013, 26, 6937-6953.	3.2	12
43	Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century. Geophysical Research Letters, 2013, 40, 5526-5530.	4.0	14
44	Stability of weather regimes during the last millennium from climate simulations. Geophysical Research Letters, 2012, 39, .	4.0	17
45	Sea surface temperature variability in the subpolar Atlantic over the last two millennia. Paleoceanography, 2011, 26, .	3.0	78
46	Volcanic impact on the Atlantic Ocean over the last millennium. Climate of the Past, 2011, 7, 1439-1455.	3.4	58
47	Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature, 2011, 474, 196-199.	27.8	80
48	Potential source regions of biogenic aerosol number concentration apportioning at King George Island, Antarctic Peninsula. Antarctic Science, 2010, 22, 580-588.	0.9	2
49	Influence of solar variability, CO&Itsub>2&It/sub> and orbital forcing between 1000 and 1850 AD in the IPSLCM4 model. Climate of the Past, 2010, 6, 445-460.	3.4	53
50	Moisture Pattern During the Last Glacial Maximum in South America. Developments in Paleoenvironmental Research, 2009, , 3-27.	8.0	17
51	Orbital and Millennial-Scale Precipitation Changes in Brazil from Speleothem Records. Developments in Paleoenvironmental Research, 2009, , 29-60.	8.0	19
52	Chronologies of the Last Glacial Maximum and its Termination in the Andes (â^¼10–55°S) Based on Surface Exposure Dating. Developments in Paleoenvironmental Research, 2009, , 61-87.	8.0	4
53	Vegetation and Fire at the Last Clacial Maximum in Tropical South America. Developments in Paleoenvironmental Research, 2009, , 89-112.	8.0	25
54	Re-evaluation of Climate Change in Lowland Central America During the Last Glacial Maximum Using New Sediment Cores from Lake Petén Itzá, Guatemala. Developments in Paleoenvironmental Research, 2009, , 113-128.	8.0	42

#	Article	IF	CITATIONS
55	Glacial to Holocene Paleoceanographic and Continental Paleoclimate Reconstructions Based on ODP Site 1233/GeoB 3313 Off Southern Chile. Developments in Paleoenvironmental Research, 2009, , 129-156.	8.0	10
56	Sensitivity of South American Tropical Climate to Last Glacial Maximum Boundary Conditions: Focus on Teleconnections with Tropics and Extratropics. Developments in Paleoenvironmental Research, 2009, , 213-238.	8.0	6
57	Similarities and Discrepancies Between Andean Ice Cores Over the Last Deglaciation: Climate Implications. Developments in Paleoenvironmental Research, 2009, , 239-255.	8.0	2
58	The Nature and Origin of Decadal to Millennial Scale Climate Variability in the Southern Tropics of South America: The Holocene Record of Lago Umayo, Peru. Developments in Paleoenvironmental Research, 2009, , 301-322.	8.0	23
59	Millennial-Scale Ecological Changes in Tropical South America Since the Last Glacial Maximum. Developments in Paleoenvironmental Research, 2009, , 283-300.	8.0	33
60	Hydrological Variability in South America Below the Tropic of Capricorn (Pampas and Patagonia,) Tj ETQq0 0 0 rg	BT ₈ /Overlo	bck_{52} 10 Tf 50 5
61	Climate Change in Southern South America During the Last Two Millennia. Developments in Paleoenvironmental Research, 2009, , 353-393.	8.0	39
62	The Little Ice Age in Southern South America: Proxy and Model Based Evidence. Developments in Paleoenvironmental Research, 2009, , 395-412.	8.0	9

63	Teleconnections into South America from the Tropics and Extratropics on Interannual and Intraseasonal Timescales. Developments in Paleoenvironmental Research, 2009, , 159-191.	8.0	58
64	South American Climate Variability and Change: Remote and Regional Forcing Processes. Developments in Paleoenvironmental Research, 2009, , 193-212.	8.0	7
65	38. Mechanisms leading to the last glacial inception over North America: Results from the CLIMBER-GREMLINS atmosphere-ocean-vegetation northern hemisphere ice-sheet model. Developments in Quaternary Sciences, 2007, , 573-582.	0.1	1
66	Progress in Paleoclimate Modeling*. Journal of Climate, 2006, 19, 5031-5057.	3.2	63
67	Impact of the hydrological cycle on past climate changes: three illustrations at different time scales. Comptes Rendus - Geoscience, 2005, 337, 125-137.	1.2	8
68	The impact of precession changes on the Arctic climate during the last interglacial–glacial transition. Earth and Planetary Science Letters, 2005, 236, 285-304.	4.4	25
69	Sensitivity of Northern Hemispheric continental ice sheets to tropical SST during deglaciation. Geophysical Research Letters, 2004, 31, .	4.0	12
70	Quantifying ice-sheet feedbacks during the last glacial inception. Geophysical Research Letters, 2004, 31, .	4.0	64
71	Sensitivity of the northern extratropics hydrological cycle to the changing insolation forcing at 126 and 115AkyABP. Climate Dynamics, 2003, 21, 273-287.	3.8	18
72	Modelling the climate evolution from the last interglacial to the start of the last glaciation: The role of Arctic Ocean freshwater budget. Geophysical Research Letters, 2003, 30, .	4.0	22

#	Article	IF	CITATIONS
73	Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature, 2001, 410, 570-574.	27.8	180