
Mina Dawood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110371/publications.pdf Version: 2024-02-01

ΜΙΝΑ ΠΑΨΟΟΡ

#	Article	IF	CITATIONS
1	Effect of surface preparation technique on fatigue performance of steel structures repaired with self-stressing SMA/CFRP patch. Composite Structures, 2022, 280, 114968.	5.8	6
2	Effect of surface preparation technique on bond behavior of CFRP-steel double-lap joints: Experimental and numerical studies. Composite Structures, 2021, 255, 113048.	5.8	13
3	Influence of pH on chloride binding isotherms for cement paste and its components. Cement and Concrete Research, 2021, 143, 106378.	11.0	29
4	Bond behavior of epoxy resin–polydicyclopentadiene phase separated interpenetrating networks for adhering carbon fiber reinforced polymer to steel. Polymer Engineering and Science, 2020, 60, 104-112.	3.1	14
5	Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels. Construction and Building Materials, 2020, 232, 117205.	7.2	57
6	Influence of morphological characteristics on the mechanical properties and failure mechanisms of legacy butt welds. Construction and Building Materials, 2019, 198, 158-171.	7.2	1
7	Reliability Analysis of Debonding in Steel Beams Strengthened with Externally Bonded CFRP Composites. Journal of Composites for Construction, 2019, 23, .	3.2	8
8	Rehabilitation of corroded H-piles using friction-type bolted plate-based repair system. Journal of Constructional Steel Research, 2018, 145, 277-288.	3.9	1
9	Experimental Study of Full-Scale Corroded Steel Bridge Piles Repaired Underwater with Grout-Filled Fiber-Reinforced Polymer Jackets. Journal of Composites for Construction, 2018, 22, .	3.2	18
10	Prestressing bridge girders with carbon fiber–reinforced polymer: State of knowledge and research needs. Advances in Structural Engineering, 2018, 21, 598-612.	2.4	3
11	A closed-form solution of the interfacial stresses and strains in steel beams strengthened with externally bonded plates using ductile adhesives. Engineering Structures, 2018, 154, 66-77.	5.3	21
12	Bond behavior of NiTiNb SMA wires embedded in CFRP composites. Polymer Composites, 2018, 39, 3780-3791.	4.6	19
13	Shape memory alloy-carbon fiber reinforced polymer system for strengthening fatigue-sensitive metallic structures. Engineering Structures, 2018, 171, 190-201.	5.3	29
14	Experimental study and probabilistic bond strengths of adhesively-bonded steel butt joints under mixed-mode loadings. Engineering Structures, 2018, 172, 163-171.	5.3	3
15	Reinforced Concrete Degradation in the Harsh Climates of the Arabian Gulf: Field Study on 30-to-50-Year-Old Structures. Journal of Performance of Constructed Facilities, 2018, 32, 04018059.	2.0	20
16	Case Study on the Collapse Potential of a Wharf Supported by Severely Deteriorated Steel Piles under Gravitational Loads. Journal of Performance of Constructed Facilities, 2018, 32, .	2.0	3
17	Evaluation of existing provisions for design of "pinned―column base-plate connections. Journal of Constructional Steel Research, 2018, 148, 233-250.	3.9	6
18	Fatigue crack growth analysis of steel elements reinforced with shape memory alloy (SMA)/fiber reinforced polymer (FRP) composite patches. Composite Structures, 2017, 164, 158-169.	5.8	42

Mina Dawood

#	Article	IF	CITATIONS
19	Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers. Smart Materials and Structures, 2017, 26, 035059.	3.5	8
20	Reversed Cyclic Behavior of Column-to-Foundation Connections in Low-Rise Metal Buildings. Journal of Structural Engineering, 2017, 143, .	3.4	6
21	Reliability analysis of adhesively bonded CFRP-to-steel double lap shear joint with thin outer adherends. Construction and Building Materials, 2017, 141, 52-63.	7.2	23
22	High-cycle fatigue performance of high-mast illumination pole bases with pre-existing cracks. Journal of Constructional Steel Research, 2017, 138, 463-472.	3.9	8
23	Fatigue Strengthening of Metallic Structures with a Thermally Activated Shape Memory Alloy Fiber-Reinforced Polymer Patch. Journal of Composites for Construction, 2017, 21, .	3.2	33
24	Fatigue behavior of a thermally-activated NiTiNb SMA-FRP patch. Smart Materials and Structures, 2016, 25, 015030.	3.5	21
25	Experimental Investigation of Bond between High-Modulus CFRP and Steel at Moderately Elevated Temperatures. Journal of Composites for Construction, 2016, 20, .	3.2	31
26	Sustainability of fiber-reinforced polymers (FRPs) as a construction material. , 2016, , 521-538.		15
27	Debonding of Carbon Fiber–Reinforced Polymer Patches from Cracked Steel Elements under Fatigue Loading. Journal of Composites for Construction, 2016, 20, .	3.2	29
28	Inelastic Buckling Behavior of Steel H-Piles with Localized Severe Corrosion. Journal of Bridge Engineering, 2016, 21, .	2.9	9
29	Calibration of Flexural Resistance Factors for Load and Resistance Factor Design of Concrete Bridge Girders Prestressed with Carbon Fiber–Reinforced Polymers. Journal of Composites for Construction, 2016, 20, 04015050.	3.2	5
30	Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch. Smart Materials and Structures, 2015, 24, 065035.	3.5	47
31	Repair of corroded and buckled short steel columns using concrete-filled GFRP jackets. Construction and Building Materials, 2015, 94, 20-27.	7.2	28
32	Bond behavior of superelastic shape memory alloys to carbon fiber reinforced polymer composites. Composites Part B: Engineering, 2015, 77, 238-247.	12.0	45
33	Influence of base-plate connection stiffness on the design of low-rise metal buildings. Journal of Constructional Steel Research, 2015, 115, 169-178.	3.9	10
34	Experimental investigation of short steel columns with localized corrosion. Thin-Walled Structures, 2015, 87, 191-199.	5.3	78
35	Durability of steel components strengthened with fiber-reinforced polymer (FRP) composites. , 2014, , 96-114.		11
36	Rehabilitation of steel tension members using fiber-reinforced polymer (FRP) composites. , 2014, ,		1

36 169-200.

Mina Dawood

#	Article	IF	CITATIONS
37	Fatigue Life Assessment of Cracked High-Mast Illumination Poles. Journal of Performance of Constructed Facilities, 2014, 28, 311-320.	2.0	11
38	Moment-Rotation Behavior of "Pinned" Connections in Low-Rise Metal Buildings. , 2014, , .		0
39	Numerical investigation of H-shaped short steel piles with localized severe corrosion. Engineering Structures, 2014, 73, 114-124.	5.3	42
40	Fiber-reinforced polymer (FRP) composites for strengthening steel structures. , 2013, , 382-409.		1
41	Connection development and in-plane response of glass fiber reinforced polymer sandwich panels with reinforced cores. Canadian Journal of Civil Engineering, 2013, 40, 1117-1126.	1.3	3
42	Innovative Use of FRP for the Precast Concrete Industry. Advances in Structural Engineering, 2012, 15, 565-574.	2.4	11
43	Behavior and Performance of Fiber-Reinforced Polymer-to-Steel Bond. Transportation Research Record, 2012, 2313, 181-188.	1.9	11
44	Enhancing the resistance of composite sandwich panels to localized forces for civil infrastructure and transportation applications. Composite Structures, 2011, 93, 2983-2991.	5.8	15
45	Mechanical properties of kenaf fiber reinforced concrete. Construction and Building Materials, 2011, 25, 1991-2001.	7.2	166
46	Static and fatigue bending behavior of pultruded GFRP sandwich panels with through-thickness fiber insertions. Composites Part B: Engineering, 2010, 41, 363-374.	12.0	42
47	Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions. Composite Structures, 2010, 92, 950-963.	5.8	38
48	Environmental durability of a CFRP system for strengthening steel structures. Construction and Building Materials, 2010, 24, 1682-1689.	7.2	135
49	Global and Local Fiber Optic Sensors for Health Monitoring of Civil Engineering Infrastructure Retrofit with FRP Materials. Structural Health Monitoring, 2010, 9, 309-322.	7.5	24
50	Effective Splices for a Carbon Fiber–Reinforced Polymer. Transportation Research Record, 2009, 2131, 125-133.	1.9	14
51	Development of a carbon fiber reinforced polymer system for strengthening steel structures. Composites Part A: Applied Science and Manufacturing, 2008, 39, 388-397.	7.6	91
52	Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures. , 2008, , .		2
53	Fatigue and Overloading Behavior of Steel–Concrete Composite Flexural Members Strengthened with High Modulus CFRP Materials. Journal of Composites for Construction, 2007, 11, 659-669.	3.2	63
54	Proposed design guidelines for strengthening of steel bridges with FRP materials. Construction and Building Materials, 2007, 21, 1001-1010.	7.2	170

#	Article	IF	CITATIONS
55	Bond Behavior of CFRP Strengthened Steel Structures. Advances in Structural Engineering, 2006, 9, 805-817.	2.4	83
56	Fundamental Characteristics of New High Modulus CFRP Materials for Strengthening Steel Bridges and Structures. , 2006, , 215-226.		2