Carlos F Menck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110344/publications.pdf

Version: 2024-02-01

201 papers

11,658 citations

47006 47 h-index 101 g-index

203 all docs 203 docs citations

203 times ranked 15011 citing authors

#	Article	IF	CITATIONS
1	Mutagenicity Profile Induced by UVB Light in Human Xeroderma Pigmentosum Group C Cells ^{â€} . Photochemistry and Photobiology, 2022, 98, 713-731.	2.5	3
2	Detection of Post-Replicative Gaps Accumulation and Repair in Human Cells using the DNA Fiber Assay. Journal of Visualized Experiments, 2022, , .	0.3	O
3	Photorepair of Either CPD or 6-4PP DNA Lesions in Basal Keratinocytes Attenuates Ultraviolet-Induced Skin Effects in Nucleotide Excision Repair Deficient Mice. Frontiers in Immunology, 2022, 13, 800606.	4.8	7
4	DNA polymerase eta protects human cells against DNA damage induced by the tumor chemotherapeutic temozolomide. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 878, 503498.	1.7	4
5	Melanopsin (Opn4) is an oncogene in cutaneous melanoma. Communications Biology, 2022, 5, 461.	4.4	10
6	ATM Pathway Is Essential for HPV–Positive Human Cervical Cancer-Derived Cell Lines Viability and Proliferation. Pathogens, 2022, 11, 637.	2.8	2
7	Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Seminars in Cell and Developmental Biology, 2021, 114, 20-35.	5.0	14
8	Biallelic UBE4A loss-of-function variants cause intellectual disability and global developmental delay. Genetics in Medicine, 2021, 23, 661-668.	2.4	2
9	DNA damage and oxidative stress in human cells infected by Trypanosoma cruzi. PLoS Pathogens, 2021, 17, e1009502.	4.7	18
10	Xeroderma pigmentosum variant: squamous cell carcinoma of the lower lip harboring exon 11 mutation of POLH. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2021, 132, e97-e105.	0.4	4
11	Neurovascular dysfunction and neuroinflammation in a Cockayne syndrome mouse model. Aging, 2021, 13, 22710-22731.	3.1	5
12	Loss of Melanopsin (OPN4) Leads to a Faster Cell Cycle Progression and Growth in Murine Melanocytes. Current Issues in Molecular Biology, 2021, 43, 1436-1450.	2.4	9
13	XPC and POLH/XPV Genes Mutated in a Genetic Cluster of Xeroderma Pigmentosum Patients in Northeast Brazil. Frontiers in Genetics, 2021, 12, 784963.	2.3	3
14	Whole-exome sequencing reveals the impact of UVA light mutagenesis in xeroderma pigmentosum variant human cells. Nucleic Acids Research, 2020, 48, 1941-1953.	14.5	27
15	Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. Environment International, 2020, 145, 106150.	10.0	44
16	DNA Damage Induced by Late Spring Sunlight in Antarctica. Photochemistry and Photobiology, 2020, 96, 1215-1220.	2.5	14
17	Revealing Temozolomide Resistance Mechanisms via Genome-Wide CRISPR Libraries. Cells, 2020, 9, 2573.	4.1	24
18	NEK10 interactome and depletion reveal new roles in mitochondria. Proteome Science, 2020, 18, 4.	1.7	17

#	Article	IF	Citations
19	Protein signatures to identify the different genera within the Xanthomonadaceae family. Brazilian Journal of Microbiology, 2020, 51, 1515-1526.	2.0	6
20	Evidence for sub-functionalization of tandemly duplicated XPB nucleotide excision repair genes in Arabidopsis thaliana. Gene, 2020, 754, 144818.	2.2	2
21	Melanopsin mediates UVA-dependent modulation of proliferation, pigmentation, apoptosis, and molecular clock in normal and malignant melanocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118789.	4.1	22
22	The Iberian legacy into a young genetic xeroderma pigmentosum cluster in central Brazil. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 852, 503164.	1.7	2
23	Comprehensive germline mutation analysis and clinical profile in a large cohort of Brazilian xeroderma pigmentosum patients. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2392-2401.	2.4	17
24	Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase $\hat{\iota}$. Scientific Reports, 2020, 10, 1311.	3.3	7
25	Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genetics and Molecular Biology, 2020, 43, e20190104.	1.3	47
26	XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis, 2019, 34, 341-354.	2.6	12
27	ATR mediates cisplatin resistance in 3D-cultured breast cancer cells via translesion DNA synthesis modulation. Cell Death and Disease, 2019, 10, 459.	6.3	46
28	NEK5 interacts with topoisomerase $\rm Ill^2$ and is involved in the DNA damage response induced by etoposide. Journal of Cellular Biochemistry, 2019, 120, 16853-16866.	2.6	14
29	Genetic and behavioral characterization of a Kmt2d mouse mutant, a new model for Kabuki Syndrome. Genes, Brain and Behavior, 2019, 18, e12568.	2.2	12
30	Familial predisposition to TP53/complex karyotype MDS and leukemia in DNA repair-deficient xeroderma pigmentosum. Blood, 2019, 133, 2718-2724.	1.4	31
31	Mutation in NADPH oxidase 3 (NOX3) impairs SHH signaling and increases cerebellar neural stem/progenitor cell proliferation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1502-1515.	3.8	10
32	The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells. Scientific Reports, 2019, 9, 17639.	3.3	87
33	The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radical Biology and Medicine, 2019, 131, 432-442.	2.9	20
34	ATR/Chk1 Pathway is Activated by Oxidative Stress in Response to UVA Light in Human Xeroderma Pigmentosum Variant Cells. Photochemistry and Photobiology, 2019, 95, 345-354.	2.5	8
35	Filling gaps in translesion DNA synthesis in human cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 836, 127-142.	1.7	26
36	Horizontal Gene Transfer Building Prokaryote Genomes: Genes Related to Exchange Between Cell and Environment are Frequently Transferred. Journal of Molecular Evolution, 2018, 86, 190-203.	1.8	20

#	Article	lF	Citations
37	Xeroderma Pigmentosum: When the Sun Is the Enemy. , 2018, , 562-562.		O
38	DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics, 2018, 73, e478s.	1.5	262
39	Genoprotective Effect of <i>Phyllanthus orbicularis</i> Radiation. Photochemistry and Photobiology, 2018, 94, 1026-1031.	2.5	5
40	DUOX1 Silencing in Mammary Cell Alters the Response to Genotoxic Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	4.0	11
41	Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology and Medicine, 2017, 107, 110-124.	2.9	279
42	Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. Autophagy, 2017, 13, 928-940.	9.1	77
43	LMNB1 mutation causes cerebellar involvement and a genome instability defect. Journal of the Neurological Sciences, 2017, 379, 249-252.	0.6	5
44	Molecular characterization of Caulobacter crescentus mutator strains. Gene, 2017, 626, 251-257.	2.2	11
45	Major Roles for Pyrimidine Dimers, Nucleotide Excision Repair, and ATR in the Alternative Splicing Response to UV Irradiation. Cell Reports, 2017, 18, 2868-2879.	6.4	41
46	Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation. Free Radical Biology and Medicine, 2017, 108, 86-93.	2.9	21
47	Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Scientific Reports, 2017, 7, 10937.	3.3	62
48	A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations. British Journal of Dermatology, 2017, 176, 1270-1278.	1.5	23
49	Autophagy Roles in the Modulation of DNA Repair Pathways. International Journal of Molecular Sciences, 2017, 18, 2351.	4.1	99
50	Evaluation of Genotoxic and DNA Photo-Protective Activity of Bryothamnion triquetrum and Halimeda incrassata Seaweeds Extracts. Cosmetics, 2017, 4, 23.	3.3	3
51	Toxic Evaluation of Cymbopogon citratus Chemical Fractions in E. coli. Cosmetics, 2017, 4, 20.	3.3	1
52	Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells. Nucleic Acids Research, 2017, 45, 1270-1280.	14.5	40
53	The third of a series of articles for the 60th anniversary of the Brazilian Society of Genetics. Genetics and Molecular Biology, 2017, 40, I-I.	1.3	0
54	Evolutionary and Functional Relationships of the dha Regulon by Genomic Context Analysis. PLoS ONE, 2016, 11, e0150772.	2.5	10

#	Article	IF	Citations
55	Microenvironment and autophagy cross-talk: Implications in cancer therapy. Pharmacological Research, 2016, 107, 300-307.	7.1	29
56	The ubiquitin family meets the Fanconi anemia proteins. Mutation Research - Reviews in Mutation Research, 2016, 769, 36-46.	5.5	15
57	Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells. Nucleic Acids Research, 2016, 44, 5717-5731.	14.5	60
58	Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Human Molecular Genetics, 2016, 25, 1271-1280.	2.9	33
59	Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress. Free Radical Biology and Medicine, 2016, 90, 91-100.	2.9	28
60	XPC deficiency is related to APE1 and OGG1 expression and function. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 784-785, 25-33.	1.0	16
61	NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget, 2016, 7, 48081-48092.	1.8	94
62	The first of a series of articles dedicated to the 60th anniversary of the Brazilian Society of Genetics (SBG). Genetics and Molecular Biology, 2016, 39, 301-301.	1.3	0
63	The second of a series of articles for the 60th anniversary of the Brazilian Society of Genetics. Genetics and Molecular Biology, 2016, 39, 475-475.	1.3	0
64	ATR suppresses apoptosis after UVB light by controlling both translesion synthesis and alternative tolerance pathways. Journal of Cell Science, 2015, 128, 150-9.	2.0	15
65	DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Research, 2015, 43, 2744-2756.	14.5	64
66	Mutation in <i>PNKP</i> presenting initially as axonal Charcot-Marie-Tooth disease. Neurology: Genetics, 2015, 1, e30.	1.9	28
67	Three-dimensional microenvironment confers enhanced sensitivity to doxorubicin by reducing p53-dependent induction of autophagy. Oncogene, 2015, 34, 5329-5340.	5.9	46
68	Editorial. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 776, 1.	1.0	0
69	Overexpression of <i>KLC2 < /i> due to a homozygous deletion in the non-coding region causes SPOAN syndrome. Human Molecular Genetics, 2015, 24, ddv388.</i>	2.9	34
70	Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death and Disease, 2014, 5, e1505-e1505.	6.3	106
71	Highly Sensitive Biological Assay for Determining the Photoprotective Efficacy of Sunscreen. Environmental Science & Environmental Science & Environme	10.0	25
72	Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome. DNA Repair, 2014, 14, 27-38.	2.8	54

#	Article	IF	CITATIONS
73	DNA repair diseases: what do they tell us about cancer and aging?. Genetics and Molecular Biology, 2014, 37, 220-233.	1.3	116
74	Autophagy and genomic integrity. Cell Death and Differentiation, 2013, 20, 1444-1454.	11.2	158
75	Nucleotide excision repair activity on DNA damage induced by photoactivated methylene blue. Free Radical Biology and Medicine, 2013, 61, 343-356.	2.9	35
76	The relative roles of DNA damage induced by UVA irradiation in human cells. Photochemical and Photobiological Sciences, 2013, 12, 1483-1495.	2.9	56
77	DNA damage as a biological sensor for environmental sunlight. Photochemical and Photobiological Sciences, 2013, 12, 1259-1272.	2.9	7 3
78	The role of DNA repair in the pluripotency and differentiation of human stem cells. Mutation Research - Reviews in Mutation Research, 2013, 752, 25-35.	5.5	75
79	The Intronic Long Noncoding RNA ANRASSF1 Recruits PRC2 to the RASSF1A Promoter, Reducing the Expression of RASSF1A and Increasing Cell Proliferation. PLoS Genetics, 2013, 9, e1003705.	3.5	180
80	Susceptibility to DNA Damage as a Molecular Mechanism for Non-Syndromic Cleft Lip and Palate. PLoS ONE, 2013, 8, e65677.	2.5	35
81	Novel <i>XPG</i> (<i>ERCC5</i>) Mutations Affect <i>DNA</i> Repair and Cell Survival after Ultraviolet but not Oxidative Stress. Human Mutation, 2013, 34, 481-489.	2.5	47
82	Protective effect of a <i>Phyllanthus orbicularis</i> Pharmaceutical Biology, 2013, 51, 1-7.	2.9	10
83	UVB-Induced Cell Death Signaling Is Associated with G1-S Progression and Transcription Inhibition in Primary Human Fibroblasts. PLoS ONE, 2013, 8, e76936.	2.5	11
84	Proteome Analysis of Phenol-Degrading Achromobacter sp. Strain C-1, Isolated from an Industrial Area. Current Proteomics, 2012, 9, 280-289.	0.3	5
85	Both XPA and DNA polymerase eta are necessary for the repair of doxorubicin-induced DNA lesions. Cancer Letters, 2012, 314, 108-118.	7.2	28
86	DNA damage by singlet oxygen and cellular protective mechanisms. Mutation Research - Reviews in Mutation Research, 2012, 751, 15-28.	5.5	158
87	DNA damage profiles induced by sunlight at different latitudes. Environmental and Molecular Mutagenesis, 2012, 53, 198-206.	2.2	23
88	Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Human Molecular Genetics, 2012, 21, 3825-3834.	2.9	67
89	DNA Dosimetry Assessment for Sunscreen Genotoxic Photoprotection. PLoS ONE, 2012, 7, e40344.	2.5	21
90	DNA repair mechanisms protect our genome from carcinogenesis. Frontiers in Bioscience - Landmark, 2012, 17, 1362.	3.0	57

#	Article	IF	Citations
91	Biological Sensors for Solar Ultraviolet Radiation. Sensors, 2011, 11, 4277-4294.	3.8	55
92	DNA damage induced by the anthracycline cosmomycin D in DNA repair-deficient cells. Cancer Chemotherapy and Pharmacology, 2010, 65, 989-994.	2.3	17
93	Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells. DNA Repair, 2010, 9, 40-47.	2.8	35
94	Impact of EMS outreach: Successful developments in Latin America. Environmental and Molecular Mutagenesis, 2010, 51, 763-773.	2.2	2
95	The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. Journal of Photochemistry and Photobiology B: Biology, 2010, 99, 111-116.	3.8	88
96	Evolutionary placement of Xanthomonadales based on conserved protein signature sequences. Molecular Phylogenetics and Evolution, 2010, 54, 524-534.	2.7	30
97	Plasmid DNA damage induced by singlet molecular oxygen released from the naphthalene endoperoxide DHPNO2 and photoactivated methylene blue. Quimica Nova, 2010, 33, 279-283.	0.3	11
98	A nova grande promessa da inovação em fármacos: RNA interferência saindo do laboratório para a clÃnica. Estudos Avancados, 2010, 24, 99-108.	0.5	0
99	NAD Biosynthesis Evolution in Bacteria: Lateral Gene Transfer of Kynurenine Pathway in Xanthomonadales and Flavobacteriales. Molecular Biology and Evolution, 2009, 26, 399-406.	8.9	50
100	Characterization of the phenol monooxygenase gene from Chromobacterium violaceum: Potential use for phenol biodegradation. Biotechnology and Bioprocess Engineering, 2009, 14, 694-701.	2.6	12
101	Identification of XP Complementation Groups by Recombinant Adenovirus Carrying DNA Repair Genes. Journal of Investigative Dermatology, 2009, 129, 502-506.	0.7	12
102	How DNA lesions are turned into powerful killing structures: Insights from UV-induced apoptosis. Mutation Research - Reviews in Mutation Research, 2009, 681, 197-208.	5.5	185
103	Ultraviolet light induced DNA damage that triggers apoptosis pathways. Toxicology Letters, 2009, 189, S22.	0.8	1
104	p53 Mutant Human Glioma Cells Are Sensitive to UV-C-Induced Apoptosis Due to Impaired Cyclobutane Pyrimidine Dimer Removal. Molecular Cancer Research, 2009, 7, 237-246.	3.4	28
105	Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochemical and Photobiological Sciences, 2009, 8, 111-120.	2.9	70
106	Xeroderma pigmentosum: Living in the dark but with hope in therapy. Drugs of the Future, 2009, 34, 665.	0.1	4
107	Replacement of the Arginine Biosynthesis Operon in Xanthomonadales by Lateral Gene Transfer. Journal of Molecular Evolution, 2008, 66, 266-275.	1.8	8
108	Laterally transferred genomic islands in Xanthomonadales related to pathogenicity and primary metabolism. FEMS Microbiology Letters, 2008, 281, 87-97.	1.8	43

#	Article	IF	Citations
109	CPDs and 6-4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells. DNA Repair, 2008, 7, 303-312.	2.8	61
110	Sustained activation of p53 in confluent nucleotide excision repair-deficient cells resistant to ultraviolet-induced apoptosis. DNA Repair, 2008, 7, 922-931.	2.8	15
111	Resistance to ultraviolet-induced apoptosis in DNA repair deficient growth arrested human fibroblasts is not related to recovery from RNA transcription blockage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 640, 1-7.	1.0	8
112	Characterization of the SOS Regulon of <i>Caulobacter crescentus</i> . Journal of Bacteriology, 2008, 190, 1209-1218.	2.2	62
113	Defective Transcription/Repair Factor IIH Recruitment to Specific UV Lesions in Trichothiodystrophy Syndrome. Cancer Research, 2008, 68, 6074-6083.	0.9	15
114	Exploring DNA damage responses in human cells with recombinant adenoviral vectors. Human and Experimental Toxicology, 2007, 26, 899-906.	2.2	2
115	On the Search for Skin Gene Therapy Strategies of Xeroderma Pigmentosum Disease. Current Gene Therapy, 2007, 7, 163-174.	2.0	13
116	Differential Sensitivity of Malignant Glioma Cells to Methylating and Chloroethylating Anticancer Drugs: p53 Determines the Switch by Regulating $\langle i \rangle xpc$, ddb2 $\langle i \rangle$, and DNA Double-Strand Breaks. Cancer Research, 2007, 67, 11886-11895.	0.9	96
117	Genome Sequence of Aedes aegypti, a Major Arbovirus Vector. Science, 2007, 316, 1718-1723.	12.6	1,025
118	Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene, 2007, 26, 186-197.	5.9	440
119	A quantitative view of the transcriptome of Schistosoma mansoni adult-worms using SAGE. BMC Genomics, 2007, 8, 186.	2.8	31
120	Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus. BMC Microbiology, 2007, 7, 17.	3.3	28
121	Functional lentiviral vectors for xeroderma pigmentosum gene therapy. Journal of Biotechnology, 2006, 126, 424-430.	3.8	22
122	Adenovirus mediated transduction of the human DNA polymerase eta cDNA. DNA Repair, 2006, 5, 925-934.	2.8	10
123	Skeletal muscle cells expressing VEGF induce capillary formation and reduce cardiac injury in rats. International Journal of Cardiology, 2006, 113, 348-354.	1.7	32
124	Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis. Research in Microbiology, 2006, 157, 275-281.	2.1	38
125	Estresse oxidativo, lesões no genoma e processos de sinalização no controle do ciclo celular. Quimica Nova, 2006, 29, 1340-1344.	0.3	21
126	Involvement of DNA replication in ultraviolet-induced apoptosis of mammalian cells. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1139-1148.	4.9	10

#	Article	IF	Citations
127	Structure of the Thiazole Biosynthetic Enzyme THI1 from Arabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 30957-30966.	3.4	72
128	Transcriptome Analysis of Aspergillus nidulans Exposed to Camptothecin-Induced DNA Damage. Eukaryotic Cell, 2006, 5, 1688-1704.	3.4	26
129	Restoring DNA repair capacity of cells from three distinct diseases by XPD gene-recombinant adenovirus. Cancer Gene Therapy, 2005, 12, 389-396.	4.6	23
130	Transcriptional profiles of unirradiated or UV-irradiated human cells expressing either the cancer-prone XPB/CS allele or the noncancer-prone XPB/TTD allele. Oncogene, 2005, 24, 1359-1374.	5.9	34
131	Skin Cancer: Lights on Genome Lesions. Current Biology, 2005, 15, R58-R61.	3.9	24
132	Functional characterization of the thi1 promoter region from Arabidopsis thaliana. Journal of Experimental Botany, 2005, 56, 1797-1804.	4.8	66
133	Non-Gamma-Proteobacteria Gene Islands Contribute to the Xanthomonas Genome. OMICS A Journal of Integrative Biology, 2005, 9, 160-172.	2.0	26
134	An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus. Nucleic Acids Research, 2005, 33, 2603-2614.	14.5	100
135	Functional XPB/RAD25 redundancy in Arabidopsis genome: characterization of AtXPB2 and expression analysis. Gene, 2005, 344, 93-103.	2.2	29
136	Saci-1, -2, and -3 and Perere, Four Novel Retrotransposons with High Transcriptional Activities from the Human Parasite Schistosoma mansoni. Journal of Virology, 2004, 78, 2967-2978.	3.4	57
137	CPD-photolyase adenovirus-mediated gene transfer in normal and DNA-repair-deficient human cells. Journal of Cell Science, 2004, 117, 3579-3592.	2.0	17
138	Comparative Genomics of Two Leptospira interrogans Serovars Reveals Novel Insights into Physiology and Pathogenesis. Journal of Bacteriology, 2004, 186, 2164-2172.	2.2	406
139	The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli. Molecular Plant-Microbe Interactions, 2004, 17, 827-836.	2.6	119
140	Evaluation of Monocot and Eudicot Divergence Using the Sugarcane Transcriptome. Plant Physiology, 2004, 134, 951-959.	4.8	38
141	Schistosome transcriptome: insights and perspectives for functional genomics. Trends in Parasitology, 2004, 20, 304-308.	3.3	47
142	Different patterns of evolution for duplicated DNA repair genes in bacteria of the Xanthomonadales group. BMC Evolutionary Biology, 2004, 4, 29.	3.2	31
143	Gene transduction in skin cells: Preventing cancer in xeroderma pigmentosum mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17759-17764.	7.1	44
144	Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genetics, 2003, 35, 148-157.	21,4	433

#	Article	IF	CITATIONS
145	Effect of cell confluence on ultraviolet light apoptotic responses in DNA repair deficient cells. Mutation Research - Reviews in Mutation Research, 2003, 544, 159-166.	5.5	26
146	The eukaryotic nucleotide excision repair pathway. Biochimie, 2003, 85, 1083-1099.	2.6	302
147	Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane. Genome Research, 2003, 13, 2725-2735.	5. 5	254
148	Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. Journal of Cell Science, 2003, 116, 285-291.	2.0	78
149	Point Mutation is Responsible for Arabidopsis tz-201 Mutant Phenotype Affecting Thiamin Biosynthesis. Plant and Cell Physiology, 2003, 44, 856-860.	3.1	32
150	Complementation of the DNA Repair Deficiency in Human <i>Xeroderma Pigmentosum</i> Group A and C Cells by Recombinant Adenovirus-Mediated Gene Transfer. Human Gene Therapy, 2002, 13, 1833-1844.	2.7	26
151	Low amounts of the DNA repair XPA protein are sufficient to recover UV-resistance. Carcinogenesis, 2002, 23, 1039-1046.	2.8	30
152	COMPARATIVEGENOMICANALYSIS OFPLANT-ASSOCIATEDBACTERIA. Annual Review of Phytopathology, 2002, 40, 169-189.	7.8	171
153	Mutagenic fingerprint of ozone in human cells. DNA Repair, 2002, 1, 369-378.	2.8	16
154	Cytotoxicity and mutagenesis induced by singlet oxygen in wild type and DNA repair deficient Escherichia coli strains. DNA Repair, 2002, 1, 1051-1056.	2.8	23
155	An Adenovirus Vector Containing the Suicide Gene Thymidine Kinase for a Broad Application in Cancer Gene Therapy. Memorias Do Instituto Oswaldo Cruz, 2002, 97, 547-552.	1.6	4
156	The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant Journal, 2002, 28, 385-395.	5.7	51
157	Photorepair of RNA polymerase arrest and apoptosis after ultraviolet irradiation in normal and XPB deficient rodent cells. Cell Death and Differentiation, 2002, 9, 1099-1107.	11.2	20
158	Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417, 459-463.	27.8	1,074
159	Shining a light on photolyases. Nature Genetics, 2002, 32, 338-339.	21.4	35
160	Chromobacterium violaceum: A Review of Pharmacological and Industiral Perspectives. Critical Reviews in Microbiology, 2001, 27, 201-222.	6.1	207
161	DNA repair-related genes in sugarcane expressed sequence tags (ESTs). Genetics and Molecular Biology, 2001, 24, 131-140.	1.3	14
162	Distribution of DNA repair-related ESTs in sugarcane. Genetics and Molecular Biology, 2001, 24, 141-146.	1.3	4

#	Article	IF	Citations
163	Dual targeting properties of the N-terminal signal sequence of Arabidopsis thaliana THI1 protein to mitochondria and chloroplasts. Plant Molecular Biology, 2001, 46, 639-650.	3.9	76
164	Singlet Molecular Oxygen Triggers the soxRS Regulon of Escherichia coli. Biological Chemistry, 2001, 382, 1071-1075.	2.5	16
165	The genome sequence of the plant pathogen Xylella fastidiosa. Nature, 2000, 406, 151-157.	27.8	827
166	Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair. Genetics and Molecular Biology, 2000, 23, 689-694.	1.3	0
167	Mutation Spectrum Induced by Singlet Oxygen in Escherichia coli Deficient in Exonuclease III. Photochemistry and Photobiology, 1999, 70, 505-511.	2.5	16
168	Ribozymes and the anti-gene therapy: how a catalytic RNA can be used to inhibit gene function. Gene, 1999, 237, 303-310.	2.2	38
169	Negative selection driven by cytosine deaminase gene in Lycopersicon esculentum hairy roots. Plant Science, 1999, 141, 175-181.	3. 6	4
170	Human BCLâ€2 Expression Delays Ultravioletâ€Induced Apoptosis in Marsupial Cells. Photochemistry and Photobiology, 1998, 68, 719-724.	2.5	5
171	Cloning of a cDNA from Arabidopsis thaliana homologous to the human XPB gene. Gene, 1998, 208, 207-213.	2.2	37
172	Human BCL-2 Expression Delays Ultraviolet-Induced Apoptosis in Marsupial Cells. Photochemistry and Photobiology, 1998, 68, 719.	2.5	1
173	Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. Journal of Molecular Biology, 1997, 273, 114-121.	4.2	111
174	Human DNA repair diseases: From genome instability to cancer. Genetics and Molecular Biology, 1997, 20, 755-762.	1.0	5
175	Expression of the hepatitis B virus surface antigen in mammalian cells using an Epstein-Barr-virus-derived vector. Applied Microbiology and Biotechnology, 1996, 46, 533-537.	3. 6	2
176	Photoreversion of ultraviolet induced apoptosis in Rat Kangaroo cells. Apoptosis: an International Journal on Programmed Cell Death, 1996, 1, 153-160.	4.9	6
177	Involvement of Escherichia coli exonuclease III and endonuclease IV in the repair of singlet oxygen-induced DNA damage. Carcinogenesis, 1996, 17, 1183-1185.	2.8	20
178	Oxydation de l'ADN par l'oxygène moléculaire singulet, protection par des polyamines et conséquences biologiques. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1996, 93, 64-69.	0.2	1
179	ULTRAVIOLETâ€INDUCED CELL DEATH IS INDEPENDENT OF DNA REPLICATION IN RAT KANGAROO CELLS. Photochemistry and Photobiology, 1995, 61, 454-458.	2.5	7
180	Transient expression of hepatitis B virus surface antigen (HBsAg) gene in monkey cells by a SV40-based virus vector. Biotechnology Letters, 1995, 17, 1285-1290.	2.2	1

#	Article	IF	Citations
181	Singlet Oxygen Induces Predominantly G to T Transversions on a Single-Stranded Shuttle Vector Replicated in Monkey Cells. Free Radical Research, 1994, 21, 75-83.	3.3	19
182	[11] Shuttle vector between prokaryotes and eukaryotes for assaying singlet oxygen-induced DNA damage and mutagenicity. Methods in Enzymology, 1994, 234, 115-122.	1.0	3
183	Singlet Oxygen induced mutation spectrum in mammalian cells. Nucleic Acids Research, 1992, 20, 4319-4323.	14.5	53
184	DNA synthesis blocking lesions induced by singlet oxygen are targeted to deoxyguanosines. Nucleic Acids Research, 1992, 20, 2465-2469.	14.5	23
185	Singlet oxygen induced DNA damage. Mutation Research - DNAging, 1992, 275, 367-375.	3.2	223
186	Spontaneous and ultraviolet-induced mutations on a single-stranded shuttle vector transfected into monkey cells. Mutation Research DNA Repair, 1992, 274, 135-145.	3.7	11
187	Description of a new amplifiable shuttle vector for mutagenesis studies in human cells: application to N-methyls-N′-nitro-N-nitrosoguanidine-induced mutation spectrum. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1992, 272, 101-110.	0.4	24
188	SINGLET OXYGEN INDUCED DNA DAMAGE AND MUTAGENICITY IN A SINGLE-STRANDED SV40-BASED SHUTTLE VECTOR. Photochemistry and Photobiology, 1992, 55, 39-45.	2.5	40
189	SINGLET MOLECULAR OXYGEN INDUCED MUTAGENICITY IN A MAMMALIAN SV40â€BASED SHUTTLE VECTOR. Photochemistry and Photobiology, 1990, 51, 293-298.	2.5	40
190	SV40-based shuttle viruses. Mutation Research - Reviews in Genetic Toxicology, 1989, 220, 101-106.	2.9	14
191	Analysis of single-stranded DNA stability and damage-induced strand loss in mammalian cells using SV40-based shuttle vectors. Journal of Molecular Biology, 1989, 205, 501-509.	4.2	24
192	Strategies to Analyse Mutagenesis in Mammalian Cells Using Simian Virus 40 or Shuttle Vectors. Journal of Cell Science, 1987, 1987, 323-331.	2.0	6
193	SV40-based Escherichia coli shuttle vectors infectious for monkey cells. Gene, 1987, 53, 21-29.	2.2	23
194	Damages induced in \hat{l} » phage DNA by enzyme-generated triplet acetone. Mutation Research - DNA Repair Reports, 1986, 165, 9-14.	1.8	6
195	Escherichia coli xthA mutant is not hypersensitive to ascorbic acid/copper treatment — an H2O2 generating reaction. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1986, 174, 265-269.	1.1	5
196	Ascorbate-copper induced DNA lesions and repair in Escherichia coli K12 cells. Carcinogenesis, 1986, 7, 197-200.	2.8	7
197	SITES SENSITIVE TO S1 NUCLEASE and DISCONTINUITIES IN DNA NASCENT STRANDS OF ULTRAVIOLET IRRADIATED MOUSE CELLS. Photochemistry and Photobiology, 1983, 37, 605-610.	2.5	6
198	Recovery in the survival capacity of ultraviolet-irradiated 3T3 mouse cells at G0 cannot be solely dependent on the excision of pyrimidine dimers. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 96, 273-280.	1.0	9

CARLOS F MENCK

#	ARTICLE	IF	CITATIONS
199	R <scp>ogerio</scp> M <scp>eneghini</scp> . Photochemistry and Photobiology, 1982, 35, 507-513.	2.5	12
200	Mechanisms of tolerance to DNA lesions in mammalian cells. Quarterly Reviews of Biophysics, 1981, 14, 381-432.	5.7	42
201	PYRIMIDINE DIMERS IN DNA STRANDS OF MAMMALIAN CELLS SYNTHESIZED AFTER UV-IRRADIATION. , 1978, , 493-497.		6