
Javier Herguido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature and dilution effects on MTO process with a SAPO-34-based catalyst in fluidized bed reactor. Catalysis Today, 2022, 394-396, 219-224.	4.4	4
2	Methanol to Gasoline (MTG): Preparation, Characterization and Testing of HZSM-5 Zeolite-Based Catalysts to Be Used in a Fluidized Bed Reactor. Catalysts, 2022, 12, 134.	3.5	9
3	Improving CO2 methanation performance by distributed feeding in a Ni-Mn catalyst fixed bed reactor. Fuel, 2022, 321, 124075.	6.4	9
4	Comparison of Conventional and Two-Zone Fluidized Bed Reactors for Methanol to Olefins. Effect of Reaction Conditions and the Presence of Water in the Feed. Industrial & Engineering Chemistry Research, 2022, 61, 5757-5765.	3.7	8
5	Methanol to gasoline (MTG): Parametric study and validation of the process in a two-zone fluidized bed reactor (TZFBR). Journal of Industrial and Engineering Chemistry, 2022, 113, 189-195.	5.8	3
6	Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol. Catalysis Today, 2021, 364, 270-275.	4.4	43
7	Counteracting SAPO-34 catalyst deactivation in MTO process using a two zone fluidized bed reactor: Reactor testing and process viability. Catalysis Today, 2021, 362, 155-161.	4.4	11
8	Polymer–Ceramic Composite Membranes for Water Removal in Membrane Reactors. Membranes, 2021, 11, 472.	3.0	4
9	Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation. Catalysts, 2021, 11, 774.	3.5	8
10	MTO with SAPO-34 in a Fixed-Bed Reactor: Deactivation Profiles. Industrial & Engineering Chemistry Research, 2021, 60, 16162-16170.	3.7	5
11	High purity hydrogen from biogas via steam iron process: Preventing reactor clogging by interspersed coke combustions. Renewable Energy, 2020, 151, 619-626.	8.9	8
12	Doped iron oxide scaffolds with gradient porosity fabricated by freeze casting: Pore morphology prediction and processing parameters. Materials Science and Technology, 2020, 36, 1227-1237.	1.6	8
13	Conventional and improved fluidized bed reactors for dry reforming of methane: Mathematical models. Chemical Engineering Journal, 2020, 393, 124775.	12.7	31
14	Production and purification of hydrogen by biogas combined reforming and steam-iron process. International Journal of Hydrogen Energy, 2019, 44, 19244-19254.	7.1	17
15	Reprint of: Education of chemical engineering in Spain: A global picture. Education for Chemical Engineers, 2019, 26, 2-7.	4.8	2
16	Experimental methods in chemical engineering: Reactors—fluidized beds. Canadian Journal of Chemical Engineering, 2019, 97, 2383-2394.	1.7	32
17	Pure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes. Chemical Engineering Journal, 2019, 370, 772-781.	12.7	40
18	Kinetic Study of Dry Reforming of Methane Over Ni–Ce/Al2O3 Catalyst with Deactivation. Topics in Catalysis, 2019, 62, 456-466.	2.8	36

#	Article	IF	CITATIONS
19	Methane Aromatization in a Fluidized Bed Reactor: Parametric Study. Frontiers in Energy Research, 2019, 7, .	2.3	3
20	Biogas to high purity hydrogen by methane dry reforming in TZFBR+MB and exhaustion by Steam-Iron Process. Techno–economic assessment. International Journal of Hydrogen Energy, 2018, 43, 11663-11675.	7.1	20
21	Preliminary study on the feasibility of using a zeolite A membrane in a membrane reactor for methanol production. Separation and Purification Technology, 2018, 200, 164-168.	7.9	40
22	Education of chemical engineering in Spain: A global picture. Education for Chemical Engineers, 2018, 24, 27-31.	4.8	11
23	Glycerol steam reforming with low steam/glycerol ratio in a two-zone fluidized bed reactor. Catalysis Today, 2018, 299, 317-327.	4.4	23
24	Iron oxide ores as carriers for the production of high purity hydrogen from biogas by steam–iron process. International Journal of Hydrogen Energy, 2017, 42, 13607-13616.	7.1	18
25	Dry reforming of biogas in fluidized bed: Process intensification. International Journal of Hydrogen Energy, 2017, 42, 13589-13597.	7.1	44
26	Pure hydrogen from lighter fractions of bio-oil by steam-iron process: Effect of composition of bio-oil, temperature and number of cycles. Fuel, 2017, 203, 452-459.	6.4	7
27	High purity hydrogen from coupled dry reforming and steam iron process with cobalt ferrites as oxygen carrier: Process improvement with the addition of NiAl 2 O 4 catalyst. Catalysis Today, 2017, 296, 163-169.	4.4	10
28	Advances and trends in two-zone fluidized-bed reactors. Current Opinion in Chemical Engineering, 2017, 17, 15-21.	7.8	14
29	Preparation of Mo/HZSM-5/Bentonite Catalyst for Methane Aromatization in a Fluidized Bed Reactor. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	6
30	Hydrogen from bio-fuels by "steam-iron―process: Modelling and kinetics. International Journal of Hydrogen Energy, 2016, 41, 19349-19356.	7.1	5
31	Behaviour of freeze-casting iron oxide for purifying hydrogen streams by steam-iron process. International Journal of Hydrogen Energy, 2016, 41, 19518-19524.	7.1	9
32	Experimental and simulated solids mixing and bubbling behavior in a scaled two-section two-zone fluidized bed reactor. Chemical Engineering Science, 2016, 143, 240-255.	3.8	12
33	Use of α -shapes for the measurement of 3D bubbles in fluidized beds from two-fluid model simulations. Powder Technology, 2016, 288, 409-421.	4.2	7
34	Gas permeation effect on the Two-Section Two-Zone Fluidized Bed Membrane Reactor (TS-TZFBMR) fluid dynamics: A CFD simulation study. Chemical Engineering Journal, 2016, 305, 201-211.	12.7	9
35	Effect of the presence of light hydrocarbon mixtures on hydrogen permeance through Pd–Ag alloyed membranes. International Journal of Hydrogen Energy, 2015, 40, 3462-3471.	7.1	30
36	Hydrogen from synthetic biogas via SIP using NiAl2O4 catalyst: Reduction stage. International Journal of Hydrogen Energy, 2015, 40, 5244-5250.	7.1	14

#	Article	IF	CITATIONS
37	Hydrodynamic study of a Two-Section Two-Zone Fluidized Bed Reactor with an immersed tube bank via PIV/DIA. Chemical Engineering Science, 2015, 134, 238-250.	3.8	22
38	Hydrogen from synthetic biogas by catalyzed MDR and SIP: Screening of catalyst and iron oxide mixtures. Fuel, 2015, 140, 470-476.	6.4	17
39	A non-parametric bubble size correlation for a Two-Section Two-Zone Fluidized Bed Reactor (TS-TZFBR). Powder Technology, 2014, 256, 146-157.	4.2	16
40	CFD model prediction of the Two-Section Two-Zone Fluidized Bed Reactor (TS-TZFBR) hydrodynamics. Chemical Engineering Journal, 2014, 248, 352-362.	12.7	16
41	Purified hydrogen from synthetic biogas by joint methane dry reforming and steam-iron process: Behaviour of metallic oxides and coke formation. Fuel, 2014, 118, 100-106.	6.4	31
42	Hydrogen from ethanol by steam iron process in fixed bed reactor. International Journal of Hydrogen Energy, 2014, 39, 5267-5273.	7.1	30
43	Experimental assessment of hydrogen separation from H2/CH4 mixtures by the "steam-iron process―in an interconnected circulating fluidized bed reactor. International Journal of Hydrogen Energy, 2014, 39, 14050-14060.	7.1	9
44	Two-Zone Fluidized Bed Reactor (TZFBR) with Palladium Membrane for Catalytic Propane Dehydrogenation: Experimental Performance Assessment. Industrial & Engineering Chemistry Research, 2013, 52, 3723-3731.	3.7	23
45	Combined production and purification of hydrogen from methanol using steam iron process in fixed bed reactor. Journal of Power Sources, 2013, 242, 520-526.	7.8	33
46	Gas Catalytic Upgrading in a Two-Zone Fluidized Bed Reactor Coupled to a Cogasification Plant. Energy & Fuels, 2013, 27, 2835-2845.	5.1	12
47	Stable hydrogen production by methane steam reforming in a two-zone fluidized-bed reactor: Effect of the operating variables. International Journal of Hydrogen Energy, 2013, 38, 7830-7838.	7.1	17
48	Catalysts for the production of styrene from ethylbenzene: Redox and deactivation study. Catalysis Today, 2013, 203, 53-59.	4.4	14
49	Stable hydrogen production by methane steam reforming in a two zone fluidized bed reactor: Experimental assessment. Journal of Power Sources, 2013, 243, 233-241.	7.8	20
50	Particle Mixing in a Two-Section Two-Zone Fluidized Bed Reactor. Experimental Technique and Counter-Current Back-Mixing Model Validation. Industrial & Engineering Chemistry Research, 2013, 52, 13587-13596.	3.7	21
51	Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst. Membranes, 2013, 3, 69-86.	3.0	16
52	Coupled PIV/DIA for fluid dynamics studies on a Two-Section Two-Zone Fluidized Bed Reactor. Chemical Engineering Journal, 2012, 207-208, 122-132.	12.7	25
53	Catalytic Propane Dehydrogenation in a Two Zone Fluidized Bed Reactor with Hollow Fibre Palladium Membrane. Procedia Engineering, 2012, 44, 288-289.	1.2	0
54	Stable Steam Reforming of Ethanol in a Two-Zone Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 8840-8848.	3.7	17

#	Article	IF	CITATIONS
55	Steam-iron process kinetic model using integral data regression. International Journal of Hydrogen Energy, 2012, 37, 6995-7004.	7.1	9
56	Molybdenum addition to modified iron oxides for improving hydrogen separation in fixed bed by redox processes. International Journal of Hydrogen Energy, 2012, 37, 6978-6984.	7.1	13
57	Steam-iron process: Influence of steam on the kinetics of iron oxide reduction. International Journal of Hydrogen Energy, 2011, 36, 13425-13434.	7.1	40
58	TAP studies of Pt–Sn–K/γ-Al2O3 catalyst for propane dehydrogenation. Chemical Engineering Journal, 2011, 171, 1317-1323.	12.7	11
59	Cycle behaviour of iron ores in the steam-iron process. International Journal of Hydrogen Energy, 2011, 36, 7043-7050.	7.1	35
60	Catalytic wet oxidation of phenol using membrane reactors: A comparative study with slurry-type reactors. Catalysis Today, 2010, 149, 326-333.	4.4	13
61	Catalytic purification of H2-rich streams by CO-PROX over Pt-Co-Ce/γ-Al2O3 in fluidized bed reactors. Catalysis Today, 2010, 157, 404-409.	4.4	7
62	Comparison of different methods for quantitative analysis of TAP pulse-response data for propane dehydrogenation over Pt–Sn–K/γ–Al2O3. Chemical Engineering Science, 2010, 65, 2417-2424.	3.8	9
63	Use of Fluidized Bed Reactors for Direct Gas Phase Oxidation of Benzene to Phenol. Industrial & Engineering Chemistry Research, 2010, 49, 6810-6814.	3.7	16
64	Counteracting Catalyst Deactivation in Methane Aromatization with a Two Zone Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 996-1000.	3.7	52
65	Effect of the use in circulating fluidized bed on the performance of a VPO catalyst: Characterization and transient studies. Chemical Engineering Journal, 2009, 147, 330-335.	12.7	9
66	Conceptual design and modelling of the Steam-Iron process and fuel cell integrated system. International Journal of Hydrogen Energy, 2009, 34, 5554-5562.	7.1	22
67	Separation and storage of hydrogen by steam-iron process: Effect of added metals upon hydrogen release and solid stability. Journal of Power Sources, 2009, 192, 224-229.	7.8	49
68	Combination of a Two-Zone Fluidized Bed Reactor with a Pd hollow fibre membrane for catalytic alkane dehydrogenation. Chemical Engineering Journal, 2009, 155, 298-303.	12.7	46
69	Ptâ^'Sn/MgAl2O4 as n-Butane Dehydrogenation Catalyst in a Two-Zone Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 6573-6578.	3.7	19
70	Selective oxidation of o-xylene to phthalic anhydride over V2O5/TiO2: Kinetic study in a fluidized bed reactor. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1844-1852.	3.6	30
71	Transient kinetic modelling of propane dehydrogenation over a Pt–Sn–K/Al2O3 catalyst. Applied Catalysis A: General, 2008, 349, 156-164.	4.3	108
72	Kinetic study of the redox process for separating and storing hydrogen: Oxidation stage and ageing of solid. International Journal of Hydrogen Energy, 2008, 33, 615-626.	7.1	45

#	Article	IF	CITATIONS
73	Propane Dehydrogenation over Ptâ^'Snâ^'K/γ-Al ₂ O ₃ Catalyst in a Two-Zone Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 9314-9320.	3.7	33
74	Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors. Chemical Engineering Journal, 2007, 126, 119-130.	12.7	103
75	Kinetic study of the redox process for storing hydrogen. Catalysis Today, 2006, 116, 439-444.	4.4	66
76	A generalized kinetic model for the partial oxidation of n-butane to maleic anhydride under aerobic and anaerobic conditions. Chemical Engineering Science, 2006, 61, 6385-6394.	3.8	37
77	Modeling of fluidized bed reactors with two reaction zones. AICHE Journal, 2006, 52, 3911-3923.	3.6	19
78	On the use of fluidized bed catalytic reactors where reduction and oxidation zones are present simultaneously. Catalysis Today, 2005, 100, 181-189.	4.4	54
79	A two-zone fluidized bed reactor for catalytic propane dehydrogenation. Chemical Engineering Journal, 2005, 106, 91-96.	12.7	49
80	Fluidized Bed Reactors with Two-Zones for Maleic Anhydride Production:Â Different Configurations and Effect of Scale. Industrial & Engineering Chemistry Research, 2005, 44, 8945-8951.	3.7	20
81	New Technologies for Light Alkane Upgrading. , 2005, , 149-171.		0
82	Kinetic study of the combustion of methyl-ethyl ketone over α-hematite catalyst. Chemical Engineering Journal, 2004, 102, 107-117.	12.7	26
83	Oxidative dehydrogenation of butane in an interconnected fluidized-bed reactor. AICHE Journal, 2004, 50, 1510-1522.	3.6	27
84	Kinetics under dynamic conditions of the oxidative dehydrogenation of butane with doped V/MgO. Catalysis Today, 2004, 91-92, 281-284.	4.4	8
85	Two-zone fluidized bed reactor for simultaneous reaction and catalyst reoxidation: influence of reactor size. Applied Catalysis A: General, 2004, 272, 321-327.	4.3	16
86	Oxidative dehydrogenation of n-butane on V/MgO catalysts—kinetic study in anaerobic conditions. Chemical Engineering Science, 2003, 58, 4619-4627.	3.8	42
87	Total combustion of methyl-ethyl ketone over Fe2O3 based catalytic membrane reactors. Applied Catalysis B: Environmental, 2003, 46, 133-143.	20.2	27
88	The influence of the permeation regime on the activity of catalytic membranes for methane combustion. Journal of Catalysis, 2003, 218, 457-459.	6.2	6
89	Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation. Applied Catalysis A: General, 2003, 248, 105-116.	4.3	124
90	Experimental Study on the Oxidation of Butane to Maleic Anhydride in a Two-Zone Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2002, 41, 5181-5186.	3.7	26

#	Article	IF	CITATIONS
91	Deactivation of bulk iron oxide catalysts during methane combustion. Studies in Surface Science and Catalysis, 2001, 139, 487-494.	1.5	2
92	Methane combustion over unsupported iron oxide catalysts. Catalysis Today, 2001, 64, 43-50.	4.4	29
93	Modelling of a two-zone fluidised bed reactor for the oxidative dehydrogenation of n-butane. Powder Technology, 2001, 120, 88-96.	4.2	24
94	Catalytic dehydrogenation of n-butane in a fluidized bed reactor with separate coking and regeneration zones. Studies in Surface Science and Catalysis, 2000, , 2717-2722.	1.5	20
95	MoO3/MgO as a catalyst in the oxidative dehydrogenation of n-butane in a two-zone fluidized bed reactor. Catalysis Today, 2000, 61, 101-107.	4.4	33
96	Oxidative Dehydrogenation of Alkanes over V-based Catalysts: Influence of Redox Properties on Catalytic Performance. Journal of Catalysis, 1999, 185, 324-332.	6.2	70
97	Oxidative Dehydrogenation of n-Butane in a Two-Zone Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research, 1999, 38, 90-97.	3.7	53
98	Oxidative dehydrogenation of n-butane on V/MgO catalysts. Influence of the type of contactor. Catalysis Letters, 1998, 50, 25-30.	2.6	22
99	Hydrogenation of Acetylene over Ni/NiAl2O4Catalyst: Characterization, Coking, and Reaction Studies. Journal of Catalysis, 1996, 159, 313-322.	6.2	84
100	Oxidation of Hydrocarbons in anin SituRedox Fluidized Bed Reactor. Journal of Catalysis, 1996, 163, 218-221.	6.2	24
101	Characterization of porous ceramic membranes for their use in catalytic reactors for methane oxidative coupling. Catalysis Today, 1995, 25, 263-269.	4.4	12
102	Influence of the catalyst pretreatment on the relative rates of the main and coking reactions during acetylene hydrogenation on a NiO/NiAl2O4 catalyst. Studies in Surface Science and Catalysis, 1994, 88, 555-560.	1.5	3
103	Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock. Industrial & Engineering Chemistry Research, 1992, 31, 1274-1282.	3.7	257
104	Purificación de hidrógeno a partir de gas de sÃntesis mediante el proceso "Steam-Iron". Jornadas De Jóvenes Investigadores Del I3A, 0, 5, .	0.0	0
105	Estudio cinético del reformado seco de biogás. Jornadas De Jóvenes Investigadores Del I3A, 0, 5, .	0.0	0
106	Hidrólisis ácida de cáscaras de vaina de cacao CCN-51 Jornadas De Jóvenes Investigadores Del I3A, 0, 6, .	0.0	0
107	Producción de olefinas a partir de metanol. Jornadas De Jóvenes Investigadores Del I3A, O, 7, .	0.0	0
108	Cinética de la hidrólisis de la cáscara de la vaina de cacao CCN-51. Jornadas De Jóvenes Investigadores Del I3A, 0, 7, .	0.0	0

7

#	Article	IF	CITATIONS
109	Conversión de CO2 en gas natural sintético: análisis de eficiencia mediante el uso de catalizadores basados en sepiolita. Jornadas De Jóvenes Investigadores Del I3A, 0, 8, .	0.0	Ο