
## Jean-Marie Raquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110178/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF          | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| 1  | Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 2013, 38, 1504-1542.                                                                                                                                   | 24.7        | 992          |
| 2  | Thermosetting (bio)materials derived from renewable resources: A critical review. Progress in Polymer Science, 2010, 35, 487-509.                                                                                           | 24.7        | 782          |
| 3  | From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled<br>Polylactide-Based Nanocomposites. Biomacromolecules, 2011, 12, 2456-2465.                                                | 5.4         | 365          |
| 4  | Shape-memory polymers for multiple applications in the materials world. European Polymer Journal, 2016, 80, 268-294.                                                                                                        | 5.4         | 260          |
| 5  | Surface-initiated controlled polymerization as a convenient method for designing functional polymer<br>brushes: From self-assembled monolayers to patterned surfaces. Progress in Polymer Science, 2012, 37,<br>157-181.    | 24.7        | 224          |
| 6  | Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Composites Science and Technology, 2012, 72, 544-549.                                  | 7.8         | 219          |
| 7  | New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol)<br>(PEG) via reactive extrusion. European Polymer Journal, 2011, 47, 2134-2144.                                         | 5.4         | 209          |
| 8  | Recent Advances in Reactive Extrusion Processing of Biodegradable Polymerâ€Based Compositions.<br>Macromolecular Materials and Engineering, 2008, 293, 447-470.                                                             | 3.6         | 204          |
| 9  | Poly(É›-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties. Polymer, 2011, 52, 1532-1538.             | 3.8         | 200          |
| 10 | High Molecular Weight Poly(butylene succinate- <i>co</i> -butylene furandicarboxylate) Copolyesters:<br>From Catalyzed Polycondensation Reaction to Thermomechanical Properties. Biomacromolecules,<br>2012, 13, 2973-2981. | 5.4         | 192          |
| 11 | Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines<br>To Achieve Thermosets or Thermoplastics. Macromolecules, 2016, 49, 2162-2171.                                            | 4.8         | 185          |
| 12 | Nucleation and Crystallization in Double Crystalline Poly(p-dioxanone)-b-poly(ε-caprolactone) Diblock<br>Copolymers. Macromolecules, 2003, 36, 1633-1644.                                                                   | 4.8         | 167          |
| 13 | CO <sub>2</sub> -blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and<br>CO <sub>2</sub> -sourced monomers to potentially thermal insulating materials. Green Chemistry,<br>2016, 18, 2206-2215.     | 9.0         | 165          |
| 14 | Crystallization Kinetics and Morphology of Biodegradable Double Crystalline PLLA- <i>b</i> -PCL<br>Diblock Copolymers. Macromolecules, 2010, 43, 4149-4160.                                                                 | 4.8         | 163          |
| 15 | Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer, 2015, 65, 9-17.                                             | 3.8         | 163          |
| 16 | Production of Starch Foams by Twin-Screw Extrusion:Â Effect of Maleated Poly(butylene) Tj ETQq0 0 0 rgBT /Ove                                                                                                               | erlock 10 T | f 50 1 42 Td |

| 17 | Designing Multiple-Shape Memory Polymers with Miscible Polymer Blends: Evidence and Origins of a Triple-Shape Memory Effect for Miscible PLLA/PMMA Blends. Macromolecules, 2014, 47, 6791-6803. | 4.8 | 147 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 18 | Self-nucleation and crystallization kinetics of double crystalline<br>poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discussions, 2005, 128, 231-252.                     | 3.2 | 135 |

| #  | Article                                                                                                                                                                                                                                            | IF             | CITATIONS              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| 19 | Maleated thermoplastic starch by reactive extrusion. Carbohydrate Polymers, 2008, 74, 159-169.                                                                                                                                                     | 10.2           | 133                    |
| 20 | Recent advances in high performance poly(lactide): from "green―plasticization to super-tough<br>materials via (reactive) compounding. Frontiers in Chemistry, 2013, 1, 32.                                                                         | 3.6            | 129                    |
| 21 | Thermoreversibly Crosslinked Poly( <i>ε</i> â€caprolactone) as Recyclable Shapeâ€Memory Polymer<br>Network. Macromolecular Rapid Communications, 2011, 32, 1264-1269.                                                                              | 3.9            | 120                    |
| 22 | New development on plasticized poly(lactide): Chemical grafting of citrate on PLA by reactive extrusion. European Polymer Journal, 2012, 48, 404-415.                                                                                              | 5.4            | 115                    |
| 23 | Design of Crossâ€Linked Semicrystalline Poly(εâ€caprolactone)â€Based Networks with Oneâ€Way and Twoâ€Wa<br>Shapeâ€Memory Properties through Diels–Alder Reactions. Chemistry - A European Journal, 2011, 17,<br>10135-10143.                       | 'ay<br>3.3     | 114                    |
| 24 | In situ compatibilization of maleated thermoplastic starch/polyester meltâ€blends by reactive extrusion.<br>Polymer Engineering and Science, 2008, 48, 1747-1754.                                                                                  | 3.1            | 110                    |
| 25 | Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 2014, 36, 1-9.                                                                        | 4.8            | 106                    |
| 26 | How Composition Determines the Properties of Isodimorphic Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50<br>Crystalline Random Copolymers. Macromolecules, 2015, 48, 43-57.                                                                   | 9467 Td<br>4.8 | (succinate- <i>105</i> |
| 27 | Polyester-Grafted Cellulose Nanowhiskers: A New Approach for Tuning the Microstructure of<br>Immiscible Polyester Blends. ACS Applied Materials & Interfaces, 2012, 4, 3364-3371.                                                                  | 8.0            | 98                     |
| 28 | Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites. Polymer, 2018, 134, 155-162.                                                                                                                                            | 3.8            | 93                     |
| 29 | Poly(lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer, 2013, 54, 6818-6823.                                                                                                                                | 3.8            | 88                     |
| 30 | Simple Approach for a Self-Healable and Stiff Polymer Network from Iminoboronate-Based Boroxine<br>Chemistry. Chemistry of Materials, 2019, 31, 3736-3744.                                                                                         | 6.7            | 87                     |
| 31 | Stereocomplexation of Polylactide Enhanced by Poly(methyl methacrylate): Improved Processability<br>and Thermomechanical Properties of Stereocomplexable Polylactide-Based Materials. ACS Applied<br>Materials & Interfaces, 2013, 5, 11797-11807. | 8.0            | 85                     |
| 32 | Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 2018, 152, 126-138.                                                  | 5.8            | 81                     |
| 33 | PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties?. Polymer, 2013, 54, 3931-3939.                                                                                                                             | 3.8            | 78                     |
| 34 | Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers. European Polymer Journal, 2013, 49, 914-922.                                                                       | 5.4            | 77                     |
| 35 | Healing by the Joule effect of electrically conductive poly(ester-urethane)/carbon nanotube nanocomposites. Journal of Materials Chemistry A, 2016, 4, 4089-4097.                                                                                  | 10.3           | 75                     |
| 36 | Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators <i>via</i> 3D printing. Journal of Materials Chemistry A, 2019, 7, 15395-15403.                                                                                       | 10.3           | 73                     |

| #  | Article                                                                                                                                                                                                           | IF         | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 37 | Advances in intrinsic self-healing polyurethanes and related composites. RSC Advances, 2020, 10, 13766-13782.                                                                                                     | 3.6        | 72        |
| 38 | Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose, 2013, 20, 2877-2885.                                                                             | 4.9        | 71        |
| 39 | Poly(methyl methacrylate) capsules as an alternative to the â€~'proof-of-concept'' glass capsules used self-healing concrete. Cement and Concrete Composites, 2018, 89, 260-271.                                  | in<br>10.7 | 66        |
| 40 | Fast IR-Actuated Shape-Memory Polymers Using in Situ Silver Nanoparticle-Grafted Cellulose<br>Nanocrystals. ACS Applied Materials & Interfaces, 2018, 10, 29933-29942.                                            | 8.0        | 66        |
| 41 | One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids.<br>Nano-Micro Letters, 2015, 7, 332-340.                                                                             | 27.0       | 65        |
| 42 | Poly(l-lactide) and poly(butylene succinate) immiscible blends: From electrospinning to biologically active materials. Materials Science and Engineering C, 2014, 41, 119-126.                                    | 7.3        | 64        |
| 43 | Design of Multistimuli-Responsive Shape-Memory Polymer Materials by Reactive Extrusion. Chemistry of Materials, 2014, 26, 5860-5867.                                                                              | 6.7        | 64        |
| 44 | Recent advances in production of poly(lactic acid) (PLA) nanocomposites: a versatile method to tune crystallization properties of PLA. Nanocomposites, 2015, 1, 71-82.                                            | 4.2        | 63        |
| 45 | Preparation of Cellulose Nanocrystal-Reinforced Poly(lactic acid) Nanocomposites through<br>Noncovalent Modification with PLLA-Based Surfactants. ACS Omega, 2017, 2, 2678-2688.                                  | 3.5        | 61        |
| 46 | "Coordination-insertion―ring-opening polymerization of 1,4-dioxan-2-one and controlled synthesis of<br>diblock copolymers withÉ›-caprolactone. Macromolecular Rapid Communications, 2000, 21, 1063-1071.          | 3.9        | 60        |
| 47 | Biobased Polyesters with Composition-Dependent Thermomechanical Properties: Synthesis and Characterization of Poly(butylene succinate- <i>co</i> butylene azelate). Biomacromolecules, 2013, 14, 890-899.         | 5.4        | 60        |
| 48 | Biodegradable materials byÂreactive extrusion: from catalyzed polymerization toÂfunctionalization andÂblend compatibilization. Comptes Rendus Chimie, 2006, 9, 1370-1379.                                         | 0.5        | 59        |
| 49 | Novel Highâ€Performance Talc/Poly[(butylene adipate)â€ <i>co</i> â€ŧerephthalate] Hybrid Materials.<br>Macromolecular Materials and Engineering, 2008, 293, 310-320.                                              | 3.6        | 59        |
| 50 | Current progress in the production of PLA–ZnO nanocomposites: Beneficial effects of chain extender<br>addition on key properties. Journal of Applied Polymer Science, 2015, 132, .                                | 2.6        | 58        |
| 51 | Green and Efficient Synthesis of Dispersible Cellulose Nanocrystals in Biobased Polyesters for Engineering Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 2517-2527.                           | 6.7        | 58        |
| 52 | Ultra-tough polylactide-based materials synergistically designed in the presence of rubbery<br>Îμ-caprolactone-based copolyester and silica nanoparticles. Composites Science and Technology, 2013,<br>84, 86-91. | 7.8        | 57        |
| 53 | Poly(ω-pentadecalactone)- <i>b</i> -poly( <scp>l</scp> -lactide) Block Copolymers via Organic-Catalyzed<br>Ring Opening Polymerization and Potential Applications. ACS Macro Letters, 2015, 4, 408-411.           | 4.8        | 56        |
| 54 | Random aliphatic copolyesters as new biodegradable impact modifiers for polylactide materials.<br>European Polymer Journal, 2012, 48, 331-340.                                                                    | 5.4        | 55        |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose, 2014, 21, 4195-4207.                                                                                                                 | 4.9  | 55        |
| 56 | Tailoring Polylactide Properties for Automotive Applications: Effects of Co-Addition of Halloysite<br>Nanotubes and Selected Plasticizer. Macromolecular Materials and Engineering, 2015, 300, 684-698.                                                    | 3.6  | 55        |
| 57 | Degradation of Film and Rigid Bioplastics During the Thermophilic Phase and the Maturation Phase of Simulated Composting. Journal of Polymers and the Environment, 2021, 29, 3015-3028.                                                                    | 5.0  | 55        |
| 58 | Dynamic Iminoboronateâ€Based Boroxine Chemistry for the Design of Ambient Humidityâ€Sensitive<br>Selfâ€Healing Polymers. Chemistry - A European Journal, 2017, 23, 6730-6735.                                                                              | 3.3  | 54        |
| 59 | Stereocomplexed PLA nanocomposites: From in situ polymerization to materials properties. European<br>Polymer Journal, 2014, 54, 138-150.                                                                                                                   | 5.4  | 51        |
| 60 | Polylactide/Poly(ω-hydroxytetradecanoic acid) Reactive Blending: A Green Renewable Approach to<br>Improving Polylactide Properties. Biomacromolecules, 2015, 16, 1818-1826.                                                                                | 5.4  | 51        |
| 61 | Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. International Journal of Pharmaceutics, 2019, 569, 118581.                                                     | 5.2  | 51        |
| 62 | Investigation of the parameters used in fused deposition modeling of poly(lactic acid) to optimize 3D printing sessions. International Journal of Pharmaceutics, 2019, 565, 367-377.                                                                       | 5.2  | 51        |
| 63 | Enzymatic reactive extrusion: moving towards continuous enzyme-catalysed polyester polymerisation and processing. Green Chemistry, 2015, 17, 4146-4150.                                                                                                    | 9.0  | 49        |
| 64 | Biomimetic Water-Responsive Self-Healing Epoxy with Tunable Properties. ACS Applied Materials &<br>Interfaces, 2019, 11, 17853-17862.                                                                                                                      | 8.0  | 48        |
| 65 | Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites.<br>Polymer Degradation and Stability, 2019, 159, 184-198.                                                                                                  | 5.8  | 48        |
| 66 | Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. Journal of Hazardous Materials, 2021, 419, 126526.                                                                   | 12.4 | 48        |
| 67 | One-component Diels–Alder based polyurethanes: a unique way to self-heal. RSC Advances, 2017, 7,<br>48047-48053.                                                                                                                                           | 3.6  | 47        |
| 68 | A comprehensive review of the structures and properties of ionic polymeric materials. Polymer Chemistry, 2020, 11, 5914-5936.                                                                                                                              | 3.9  | 46        |
| 69 | Monomerâ^'Linear Macromoleculesâ^'Cyclic Oligomers Equilibria in the Polymerization of 1,4-Dioxan-2-one. Macromolecules, 2004, 37, 52-59.                                                                                                                  | 4.8  | 45        |
| 70 | Controlled Synthesis and Characterization of Poly[ethylene-block-(L,L-lactide)]s by Combining<br>Catalytic Ethylene Oligomerization with "Coordination-Insertion―Ring-Opening Polymerization.<br>Macromolecular Chemistry and Physics, 2007, 208, 896-902. | 2.2  | 45        |
| 71 | From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites. Journal of Materials Chemistry, 2010, 20, 9415.                                                                               | 6.7  | 45        |
| 72 | Confinement Effects on the Crystallization Kinetics and Self-Nucleation of Double Crystalline<br>Poly(p-dioxanone)-b-poly(ε-caprolactone) Diblock Copolymers. Macromolecular Symposia, 2004, 215,<br>369-382.                                              | 0.7  | 43        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | PLA/SiO <sub>2</sub> composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. Journal of Applied Polymer Science, 2017, 134, 45367.                  | 2.6 | 43        |
| 74 | Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids. Macromolecules, 2017, 50, 2896-2905.                                                                                                                       | 4.8 | 43        |
| 75 | Single crystals morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers.<br>Polymer, 2011, 52, 5166-5177.                                                                                        | 3.8 | 42        |
| 76 | Oxidative degradations of oxodegradable LDPE enhanced with thermoplastic pea starch:<br>Thermoâ€mechanical properties, morphology, and UVâ€ageing studies. Journal of Applied Polymer Science,<br>2011, 122, 489-496. | 2.6 | 42        |
| 77 | Some Thermodynamic, Kinetic, and Mechanistic Aspects of the Ring-Opening Polymerization of 1,4-Dioxan-2-one Initiated by Al(OiPr)3 in Bulk. Macromolecules, 2001, 34, 8419-8425.                                      | 4.8 | 41        |
| 78 | Poly(amino-methacrylate) as versatile agent for carbon nanotube dispersion: an experimental, theoretical and application study. Journal of Materials Chemistry, 2010, 20, 6873.                                       | 6.7 | 41        |
| 79 | Biobased waterborne polyurethanes for coating applications: How fully biobased polyols may improve the coating properties. Progress in Organic Coatings, 2016, 97, 175-183.                                           | 3.9 | 41        |
| 80 | A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials. Molecules, 2020, 25, 1241.                                                                                                    | 3.8 | 41        |
| 81 | Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Applied Materials<br>& Interfaces, 2016, 8, 19197-19201.                                                                                  | 8.0 | 40        |
| 82 | Design of highly tough poly( <scp>l</scp> â€lactide)â€based ternary blends for automotive applications.<br>Journal of Applied Polymer Science, 2016, 133, .                                                           | 2.6 | 39        |
| 83 | Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete. Materials, 2017, 10, 10.                                                                                                             | 2.9 | 36        |
| 84 | Processing of PVDF-based electroactive/ferroelectric films: importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals. Soft Matter, 2018, 14, 4591-4602.                   | 2.7 | 36        |
| 85 | Thermal degradation of poly(l-lactide): Accelerating effect of residual DBU-based organic catalysts.<br>Polymer Degradation and Stability, 2011, 96, 739-744.                                                         | 5.8 | 35        |
| 86 | Toughening of poly(lactide) using polyethylene glycol methyl ether acrylate: Reactive versus physical<br>blending. Polymer Engineering and Science, 2015, 55, 1408-1419.                                              | 3.1 | 35        |
| 87 | Melt-stable poly(1,4-dioxan-2-one) (co)polymers by ring-opening polymerization via continuous reactive extrusion. Polymer Engineering and Science, 2005, 45, 622-629.                                                 | 3.1 | 34        |
| 88 | Imidazolium end-functionalized poly(l-lactide) for efficient carbon nanotube dispersion. Chemical<br>Communications, 2010, 46, 5527.                                                                                  | 4.1 | 34        |
| 89 | Tunable and Durable Toughening of Polylactide Materials Via Reactive Extrusion. Macromolecular<br>Materials and Engineering, 2014, 299, 583-595.                                                                      | 3.6 | 34        |
| 90 | The Complex Amorphous Phase in Poly(butylene succinate- <i>ran</i> -butylene azelate) Isodimorphic<br>Copolyesters. Macromolecules, 2017, 50, 1569-1578.                                                              | 4.8 | 34        |

| #   | Article                                                                                                                                                                                                                                                                                | IF              | CITATIONS            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|
| 91  | Boneâ€guided regeneration: from inert biomaterials to bioactive polymer (nano)composites. Polymers<br>for Advanced Technologies, 2011, 22, 463-475.                                                                                                                                    | 3.2             | 33                   |
| 92  | In-depth investigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion. European Polymer Journal, 2017, 93, 272-283.                                                                                                    | 5.4             | 33                   |
| 93  | Ultra-stretchable ionic nanocomposites: from dynamic bonding to multi-responsive behavior. Journal of Materials Chemistry A, 2017, 5, 13357-13363.                                                                                                                                     | 10.3            | 31                   |
| 94  | Poly(ethylene oxide)- <i>b</i> -poly( <scp>l</scp> -lactide) Diblock Copolymer/Carbon Nanotube-Based<br>Nanocomposites: LiCl as Supramolecular Structure-Directing Agent. Biomacromolecules, 2011, 12,<br>4086-4094.                                                                   | 5.4             | 29                   |
| 95  | A supramolecular approach toward organo-dispersible graphene and its straightforward polymer nanocomposites. Journal of Materials Chemistry, 2012, 22, 18124.                                                                                                                          | 6.7             | 29                   |
| 96  | Acid-free extraction of cellulose type I nanocrystals using BrÃ,nsted acid-type ionic liquids.<br>Nanocomposites, 2016, 2, 65-75.                                                                                                                                                      | 4.2             | 29                   |
| 97  | Hydrolytic Degradation of Double Crystalline PPDX-b-PCL Diblock Copolymers. Macromolecular<br>Chemistry and Physics, 2005, 206, 903-914.                                                                                                                                               | 2.2             | 28                   |
| 98  | Development of Inherently Flame—Retardant Phosphorylated PLA by Combination of Ring-Opening<br>Polymerization and Reactive Extrusion. Materials, 2020, 13, 13.                                                                                                                         | 2.9             | 28                   |
| 99  | Novel poly(ester-urethane)s based on polylactide: From reactive extrusion toÂcrystallization and thermal properties. Polymer, 2012, 53, 5657-5665.                                                                                                                                     | 3.8             | 27                   |
| 100 | Magnetic Poly(vinylpyridine)â€Coated Carbon Nanotubes: An Efficient Supramolecular Tool for<br>Wastewater Purification. ChemSusChem, 2013, 6, 367-373.                                                                                                                                 | 6.8             | 27                   |
| 101 | Natural Phenolic Antioxidants As a Source of Biocompatibilizers for Immiscible Polymer Blends. ACS<br>Sustainable Chemistry and Engineering, 2018, 6, 13349-13357.                                                                                                                     | 6.7             | 27                   |
| 102 | Tailoring the isothermal crystallization kinetics of isodimorphic poly (butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf<br>121863.                                                                                                                                                         | 50 307 T<br>3.8 | d (succinate-1<br>27 |
| 103 | Tailoring of Coâ€Continuous Polymer Blend Morphology: Joint Action of Nanoclays and<br>Compatibilizers. Macromolecular Chemistry and Physics, 2010, 211, 1433-1440.                                                                                                                    | 2.2             | 26                   |
| 104 | Poly(lactic acid)-Based Materials for Automotive Applications. Advances in Polymer Science, 2017, ,<br>177-219.                                                                                                                                                                        | 0.8             | 26                   |
| 105 | A dual approach to compatibilize PLA/ABS immiscible blends with epoxidized cardanol derivatives.<br>European Polymer Journal, 2019, 114, 118-126.                                                                                                                                      | 5.4             | 26                   |
| 106 | Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2346-2358. | 2.1             | 25                   |
| 107 | Supramolecular design of high-performance poly(l-lactide)/carbon nanotube nanocomposites: from melt-processing to rheological, morphological and electrical properties. Journal of Materials Chemistry, 2011, 21, 16190.                                                               | 6.7             | 23                   |
| 108 | Polylactide stereocomplex crystallization prompted by multiwall carbon nanotubes. Journal of Applied Polymer Science, 2013, 130, 4327-4337.                                                                                                                                            | 2.6             | 23                   |

| #   | ARTICLE                                                                                                                                                                                                                   | IF              | CITATIONS            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|
| 109 | Microwave-assisted depolymerization of carrageenans from Kappaphycus alvarezii and Eucheuma<br>spinosum: Controlled and green production of oligosaccharides from the algae biomass. Algal<br>Research, 2020, 51, 102054. | 4.6             | 23                   |
| 110 | Crystallizationâ€induced toughness of rubberâ€modified polylactide: combined effects of biodegradable<br>impact modifier and effective nucleating agent. Polymers for Advanced Technologies, 2015, 26, 814-822.           | 3.2             | 22                   |
| 111 | Binary Mixed Homopolymer Brushes Tethered to Cellulose Nanocrystals: A Step Towards<br>Compatibilized Polyester Blends. Biomacromolecules, 2016, 17, 3048-3059.                                                           | 5.4             | 22                   |
| 112 | Bilayer solvent and vapor-triggered actuators made of cross-linked polymer architectures via<br>Diels–Alder pathways. Journal of Materials Chemistry B, 2017, 5, 5556-5563.                                               | 5.8             | 22                   |
| 113 | Programmable Stimuli-Responsive Actuators for Complex Motions in Soft Robotics: Concept, Design and Challenges. Actuators, 2020, 9, 131.                                                                                  | 2.3             | 22                   |
| 114 | On the Nanoscale Mapping of the Mechanical and Piezoelectric Properties of Poly (L-Lactic Acid)<br>Electrospun Nanofibers. Applied Sciences (Switzerland), 2020, 10, 652.                                                 | 2.5             | 22                   |
| 115 | Effect of extrusion and fused filament fabrication processing parameters of recycled poly(ethylene) Tj ETQq1 1 (<br>102518.                                                                                               | ).784314<br>3.0 | rgBT /Overloci<br>22 |
| 116 | Preparation and characterization of maleated thermoplastic starchâ€based nanocomposites. Journal of<br>Applied Polymer Science, 2011, 122, 639-647.                                                                       | 2.6             | 21                   |
| 117 | The role of curvature in Dielsâ $\in$ Alder functionalization of carbon-based materials. Chemical Communications, 2016, 52, 7608-7611.                                                                                    | 4.1             | 20                   |
| 118 | Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene<br>glycol-based carrier system. Carbohydrate Polymers, 2019, 224, 115188.                                            | 10.2            | 20                   |
| 119 | Melt-processing of bionanocomposites based on ethylene-co-vinyl acetate and starch nanocrystals.<br>Carbohydrate Polymers, 2019, 208, 382-390.                                                                            | 10.2            | 20                   |
| 120 | Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Science China Materials, 2020, 63, 2590-2598.                                           | 6.3             | 20                   |
| 121 | Composite Elastomer Exhibiting a Stress-Dependent Color Change and High Toughness Prepared by Self-Assembly of Silica Particles in a Polymer Network. ACS Applied Polymer Materials, 2020, 2, 4078-4089.                  | 4.4             | 20                   |
| 122 | Catalystâ€free reprocessable crosslinked biobased <scp>polybenzoxazineâ€polyurethane</scp> based on<br>dynamic carbamate chemistry. Journal of Applied Polymer Science, 2022, 139, .                                      | 2.6             | 20                   |
| 123 | The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrystEngComm, 2016, 18, 9334-9344.                                                                    | 2.6             | 19                   |
| 124 | Humidityâ€Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 2017, 218, 1700388.                                            | 2.2             | 19                   |
| 125 | Synthesis of melt-stable and semi-crystalline poly(1,4-dioxan-2-one) by ring-opening (co)polymerisation of 1,4-dioxan-2-one with different lactones. Polymer Degradation and Stability, 2004, 86, 159-169.                | 5.8             | 18                   |
| 126 | Mechanistic Insights on Spontaneous Moisture-Driven Healing of Urea-Based Polyurethanes. ACS<br>Applied Materials & Interfaces, 2019, 11, 46176-46182.                                                                    | 8.0             | 18                   |

| #   | Article                                                                                                                                                                                                                                                     | IF          | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 127 | Semi-crystalline poly(ε-caprolactone) brushes on gold substrate via "grafting from―method: New<br>insights with AFM characterization. European Polymer Journal, 2011, 47, 31-39.                                                                            | 5.4         | 17        |
| 128 | On the Sputtering of Titanium and Silver onto Liquids, Discussing the Formation of Nanoparticles.<br>Journal of Physical Chemistry C, 2018, 122, 26605-26612.                                                                                               | 3.1         | 17        |
| 129 | Interphase Design of Cellulose Nanocrystals/Poly(hydroxybutyrate- <i>ran</i> -valerate)<br>Bionanocomposites for Mechanical and Thermal Properties Tuning. Biomacromolecules, 2020, 21,<br>1892-1901.                                                       | 5.4         | 17        |
| 130 | Poly(εâ€caprolactone) and Poly(ωâ€pentadecalactone)â€Based Networks with Twoâ€Way Shapeâ€Memory Ef<br>through [2+2] Cycloaddition Reactions. Macromolecular Chemistry and Physics, 2018, 219, 1700345.                                                      | fect<br>2.2 | 16        |
| 131 | Resolving Inclusion Structure and Deformation Mechanisms in Polylactide Plasticized by Reactive Extrusion. Macromolecular Materials and Engineering, 2017, 302, 1700326.                                                                                    | 3.6         | 15        |
| 132 | Dynamic Thermal-Regulating Textiles with Metallic Fibers Based on a Switchable Transmittance.<br>Physical Review Applied, 2020, 14, .                                                                                                                       | 3.8         | 15        |
| 133 | Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery. European Polymer Journal, 2020, 133, 109795.                                                                                       | 5.4         | 15        |
| 134 | Stereocomplexes from Biosourced Lactide/Butylene Succinateâ€Based Copolymers and Their Role as Crystallization Accelerating Agent. Macromolecular Chemistry and Physics, 2012, 213, 643-653.                                                                | 2.2         | 14        |
| 135 | Tough and Three-Dimensional-Printable Poly(2-methoxyethyl acrylate)–Silica Composite Elastomer<br>with Antiplatelet Adhesion Property. ACS Applied Materials & Interfaces, 2020, 12, 46621-46628.                                                           | 8.0         | 14        |
| 136 | Diblock Copolymers Based on 1,4-Dioxan-2-one andÉ›-Caprolactone: Characterization and Thermal<br>Properties. Macromolecular Chemistry and Physics, 2004, 205, 1764-1773.                                                                                    | 2.2         | 13        |
| 137 | Reversible positioning at submicrometre scale of carbon nanotubes mediated by pH-sensitive poly(amino-methacrylate) patterns. Chemical Communications, 2011, 47, 1163-1165.                                                                                 | 4.1         | 13        |
| 138 | Synthesis of Clicked Imidazoliumâ€Containing Biosourced Copolymers and Application in Carbon<br>Nanotube Dispersion. Macromolecular Rapid Communications, 2011, 32, 1960-1964.                                                                              | 3.9         | 13        |
| 139 | Mechanistic insights on nanosilica self-networking inducing ultra-toughness of rubber-modified polylactide-based materials. Nanocomposites, 2015, 1, 113-125.                                                                                               | 4.2         | 13        |
| 140 | Hydrolytic degradation of poly( <scp>l</scp> â€lactic acid)/poly(methyl methacrylate) blends. Polymer<br>International, 2018, 67, 1393-1400.                                                                                                                | 3.1         | 13        |
| 141 | Mechanistic insights on ultra-tough polylactide-based ionic nanocomposites. Composites Science and<br>Technology, 2020, 191, 108075.                                                                                                                        | 7.8         | 13        |
| 142 | Beta Phase Crystallization and Ferro- and Piezoelectric Performances of Melt-Processed<br>Poly(vinylidene difluoride) Blends with Poly(methyl methacrylate) Copolymers Containing Ionizable<br>Moieties. ACS Applied Polymer Materials, 2020, 2, 3766-3780. | 4.4         | 12        |
| 143 | Substantial Effect of Water on Radical Melt Crosslinking and Rheological Properties of Poly(ε-Caprolactone). Polymers, 2021, 13, 491.                                                                                                                       | 4.5         | 12        |
| 144 | Paliperidone palmitate as model of heat-sensitive drug for long-acting 3D printing application.<br>International Journal of Pharmaceutics, 2022, 618, 121662.                                                                                               | 5.2         | 12        |

| #   | Article                                                                                                                                                                                                | IF                 | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 145 | COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics, 2022, 1, 282-290.                                                                                  | 4.2                | 12           |
| 146 | Strain-induced deformation mechanisms of polylactide plasticized with acrylated poly(ethylene) Tj ETQq0 0 0 rgB                                                                                        | T /Overlocl<br>3.1 | R 10 Tf 50 7 |
| 147 | Synthesis, characterization and stereocomplexation of polyamide 11/polylactide diblock copolymers.<br>European Polymer Journal, 2018, 98, 83-93.                                                       | 5.4                | 11           |
| 148 | Enzymatic Polycondensation of 1,6-Hexanediol and Diethyl Adipate: A Statistical Approach Predicting the Key-Parameters in Solution and in Bulk. Polymers, 2020, 12, 1907.                              | 4.5                | 11           |
| 149 | Development of Low-Viscosity and High-Performance Biobased Monobenzoxazine from Tyrosol and Furfurylamine. Materials, 2021, 14, 440.                                                                   | 2.9                | 11           |
| 150 | Solvent-Free Design of Biobased Non-isocyanate Polyurethanes with Ferroelectric Properties. ACS<br>Sustainable Chemistry and Engineering, 2021, 9, 14946-14958.                                        | 6.7                | 11           |
| 151 | The Impact of Diethyl Furan-2,5-dicarboxylate as an Aromatic Biobased Monomer toward<br>Lipase-Catalyzed Synthesis of Semiaromatic Copolyesters. ACS Applied Polymer Materials, 2022, 4,<br>1387-1400. | 4.4                | 11           |
| 152 | Design of New Cardanol Derivative: Synthesis and Application as Potential Biobased Plasticizer for Poly(lactide). Macromolecular Materials and Engineering, 2016, 301, 1267-1278.                      | 3.6                | 10           |
| 153 | Supramolecular Approach for Efficient Processing of Polylactide/Starch Nanocomposites. ACS Omega, 2018, 3, 1069-1080.                                                                                  | 3.5                | 10           |
| 154 | Peculiar effect of stereocomplexes on the photochemical ageing of PLA/PMMA blends. Polymer<br>Degradation and Stability, 2018, 150, 92-104.                                                            | 5.8                | 10           |
| 155 | Epimerization and chain scission of polylactides in the presence of an organic base, TBD. Polymer<br>Degradation and Stability, 2020, 181, 109188.                                                     | 5.8                | 10           |
| 156 | Adding Value in Production of Multifunctional Polylactide (PLA)–ZnO Nanocomposite Films through<br>Alternative Manufacturing Methods. Molecules, 2021, 26, 2043.                                       | 3.8                | 10           |
| 157 | Potential of poly(alkylene terephthalate)s to control endothelial cell adhesion and viability.<br>Materials Science and Engineering C, 2021, 129, 112378.                                              | 7.3                | 10           |
| 158 | Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell<br>Adhesion. Molecules, 2021, 26, 5944.                                                           | 3.8                | 10           |
| 159 | Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers, 2022, 14, 1188.                                                                                             | 4.5                | 10           |
| 160 | Synthesis of melt-processable PLA-based stereocomplexes through a sustainable melt-approach. Green<br>Chemistry, 2014, 16, 1759.                                                                       | 9.0                | 9            |
| 161 | Cerium Salts: An Efficient Curing Catalyst for Benzoxazine Based Coatings. Polymers, 2020, 12, 415.                                                                                                    | 4.5                | 9            |

162Long-acting implantable dosage forms containing paliperidone palmitate obtained by 3D printing.5.28162International Journal of Pharmaceutics, 2021, 603, 120702.5.28

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Thermoplastic polyurethanes for biomedical application: A synthetic, mechanical, antibacterial, and cytotoxic study. Journal of Applied Polymer Science, 2022, 139, 51666.                                              | 2.6 | 8         |
| 164 | Imidazolium Endâ€Functionalized ATRP Polymers as Directing Agents for CNT Dispersion and Confinement. Macromolecular Chemistry and Physics, 2012, 213, 1259-1265.                                                       | 2.2 | 7         |
| 165 | Toward "Green―Hybrid Materials: Core–Shell Particles with Enhanced Impact Energy Absorbing<br>Ability. ACS Sustainable Chemistry and Engineering, 2016, 4, 3757-3765.                                                   | 6.7 | 7         |
| 166 | Reactive plasticization of poly(lactide) with epoxy functionalized cardanol. Polymer Engineering and Science, 2018, 58, E64.                                                                                            | 3.1 | 7         |
| 167 | N-Heterocyclic carbene catalysis - from simple organic reactions to polymerization of cyclic esters.<br>Polimery, 2008, 53, 255-267.                                                                                    | 0.7 | 7         |
| 168 | Green Topochemical Esterification Effects on the Supramolecular Structure of Chitin Nanocrystals:<br>Implications for Highly Stable Pickering Emulsions. ACS Applied Nano Materials, 2022, 5, 4731-4743.                | 5.0 | 7         |
| 169 | Biobased poly(lactides)/poly(methyl methacrylate) blends: A perfect association for durable and smart applications?. AIP Conference Proceedings, 2015, , .                                                              | 0.4 | 6         |
| 170 | Modification of cellulose nanocrystals with lactic acid for direct melt blending with PLA. AIP Conference Proceedings, 2015, , .                                                                                        | 0.4 | 6         |
| 171 | Lipase-catalysed polycondensation of levulinic acid derived diol-diamide monomers: access to new poly(ester- <i>co</i> -amide)s. Polymer Chemistry, 2020, 11, 7506-7514.                                                | 3.9 | 6         |
| 172 | Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA)<br>Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles. Materials, 2021, 14, 5154.                                | 2.9 | 6         |
| 173 | Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids. ACS Applied Polymer<br>Materials, 2021, 3, 6684-6693.                                                                                      | 4.4 | 6         |
| 174 | Proof of concept of a predictive model of drug release from long-acting implants obtained by fused-deposition modeling. International Journal of Pharmaceutics, 2022, 618, 121663.                                      | 5.2 | 6         |
| 175 | Tilted fiber Bragg gratings as a new sensing device for in situ and real time monitoring of surface-initiated polymerization. Polymer Chemistry, 2014, 5, 2506.                                                         | 3.9 | 5         |
| 176 | Design of melt-recyclable poly(ε-caprolactone)-based supramolecular shape-memory nanocomposites.<br>RSC Advances, 2018, 8, 27119-27130.                                                                                 | 3.6 | 5         |
| 177 | Reactive Extrusion and Magnesium (II) N-Heterocyclic Carbene Catalyst in Continuous PLA Production.<br>Polymers, 2019, 11, 1987.                                                                                        | 4.5 | 5         |
| 178 | Impact of organoclays on the phase morphology and the compatibilization efficiency of immiscible<br>poly(ethylene terephthalate)/poly(εâ€caprolactone) blends. Journal of Applied Polymer Science, 2020, 137,<br>48812. | 2.6 | 5         |
| 179 | Recent advances in the synthesis and applications of poly(1,4-dioxan-2-one)based copolymers. Polimery, 2009, 54, 165-178.                                                                                               | 0.7 | 5         |
| 180 | Processing and Mechanical Behaviour of Halloysite Filled Starch Based Nanocomposites. Advanced<br>Materials Research, 0, 584, 445-449.                                                                                  | 0.3 | 4         |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Microwave Atmospheric Plasma: A Versatile and Fast Way to Confer Antimicrobial Activity toward<br>Direct Chitosan Immobilization onto Poly(lactic acid) Substrate. ACS Applied Bio Materials, 2021, 4,<br>7445-7455.                                | 4.6  | 4         |
| 182 | A dynamic passive thermoregulation fabric using metallic microparticles. Nanoscale, 2022, 14, 1421-1431.                                                                                                                                            | 5.6  | 4         |
| 183 | Synthesis of binary-patterned brushes by combining atom transfer radical polymerization and ring-opening polymerization. E-Polymers, 2013, 13, .                                                                                                    | 3.0  | 3         |
| 184 | <i>In situ</i> multiscale study of deformation heterogeneities in polylactideâ€based materials upon<br>drawing: Influence of initial crystallinity and plasticization. Journal of Polymer Science, Part B:<br>Polymer Physics, 2018, 56, 1452-1468. | 2.1  | 3         |
| 185 | Solid-state modification of poly(butylene terephthalate): Design of process from calorimetric<br>methods for catalyst investigation to reactive extrusion. European Polymer Journal, 2022, 166, 111010.                                             | 5.4  | 3         |
| 186 | Experimental characterization of Drobot: Towards closed-loop control. , 2014, , .                                                                                                                                                                   |      | 2         |
| 187 | Phenanthroline-functionalized MWCNTs as versatile platform for lanthanides complexation. Carbon, 2014, 70, 22-29.                                                                                                                                   | 10.3 | 1         |
| 188 | Innovative One-Shot Paradigm to Tune Filler–Polymer Matrix Interface Properties by Plasma Polymer<br>Coating in Osteosynthesis Applications. ACS Applied Bio Materials, 2021, 4, 3067-3078.                                                         | 4.6  | 1         |
| 189 | Shape Memory Polymer-Based Insertable Electrode Array Towards Minimally Invasive Subdural<br>Implantation. IEEE Sensors Journal, 2021, 21, 17282-17289.                                                                                             | 4.7  | 1         |
| 190 | Physical and mechanical properties of amphiphilic and adaptative polymer conetworks produced by Atom Transfer Radical Polymerization. ACS Symposium Series, 2009, , 269-296.                                                                        | 0.5  | 0         |
| 191 | In Situ Metal-Free Synthesis of Polylactide Enantiomers Grafted from Nanoclays of High<br>Thermostability. ACS Symposium Series, 2015, , 287-303.                                                                                                   | 0.5  | 0         |
| 192 | Nanocomposites based on ethylene vinyl acetate reinforced with different types of nanoparticles: potential applications. , 2021, , 357-377.                                                                                                         |      | 0         |