Francesco Longobardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8109568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Encapsulation of Curcumin-Loaded Liposomes for Colonic Drug Delivery in a pH-Responsive Polymer Cluster Using a pH-Driven and Organic Solvent-Free Process. Molecules, 2018, 23, 739.	3.8	78
2	Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. Journal of Chromatography A, 2011, 1218, 7534-7542.	3.7	74
3	Fluorescence polarization immunoassay for rapid screening of ochratoxin A in red wine. Analytical and Bioanalytical Chemistry, 2009, 395, 1317-1323.	3.7	72
4	Non-targeted 1H NMR fingerprinting and multivariate statistical analyses for the characterisation of the geographical origin of Italian sweet cherries. Food Chemistry, 2013, 141, 3028-3033.	8.2	51
5	Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds. Food Chemistry, 2019, 277, 25-30.	8.2	50
6	Effects of agronomical practices on chemical composition of table grapes evaluated by NMR spectroscopy. Journal of Food Composition and Analysis, 2014, 35, 44-52.	3.9	49
7	Studying ancient crop provenance: implications from δ ¹³ C and δ ¹⁵ N values of charred barley in a Middle Bronze Age silo at Ebla(NW Syria). Rapid Communications in Mass Spectrometry, 2012, 26, 327-335.	1.5	47
8	Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses. Analytical Chemistry, 2015, 87, 6709-6717.	6.5	45
9	Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the characterization of the geographical origin of Italian sweet cherries. Food Chemistry, 2015, 170, 90-96.	8.2	45
10	Food Coloring Agents and Plant Food Supplements Derived from <i>Vitis vinifera</i> : A New Source of Human Exposure to Ochratoxin A. Journal of Agricultural and Food Chemistry, 2015, 63, 3609-3614.	5.2	41
11	Geographical origin discrimination of lentils (Lens culinaris Medik.) using 1H NMR fingerprinting and multivariate statistical analyses. Food Chemistry, 2017, 237, 743-748.	8.2	39
12	An electronic nose in the discrimination of obese patients with and without obstructive sleep apnoea. Journal of Breath Research, 2015, 9, 026005.	3.0	38
13	Effects of different vinification technologies on physical and chemical characteristics of Sauvignon blanc wines. Food Chemistry, 2012, 135, 2694-2701.	8.2	32
14	Fourier transform nearâ€infrared and midâ€infrared spectroscopy as efficient tools for rapid screening of deoxynivalenol contamination in wheat bran. Journal of the Science of Food and Agriculture, 2019, 99, 1946-1953.	3.5	32
15	Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics. Food Chemistry, 2015, 188, 343-349.	8.2	30
16	Rapid screening of ochratoxin A in wheat by infrared spectroscopy. Food Chemistry, 2019, 282, 95-100.	8.2	28
17	Determination of Ochratoxin A in Wine by Means of Immunoaffinity and Aminopropyl Solid-Phase Column Cleanup and Fluorometric Detection. Journal of Agricultural and Food Chemistry, 2013, 61, 1604-1608.	5.2	26
18	The effect of in-amphorae aging on oenological parameters, phenolic profile and volatile composition of Minutolo white wine. Food Research International, 2015, 74, 294-305.	6.2	26

#	Article	IF	CITATIONS
19	Biomaterials based on photosynthetic membranes as potential sensors for herbicides. Biosensors and Bioelectronics, 2011, 26, 4747-4752.	10.1	24
20	Rapid prediction of deoxynivalenol contamination in wheat bran by MOSâ€based electronic nose and characterization of the relevant pattern of volatile compounds. Journal of the Science of Food and Agriculture, 2018, 98, 4955-4962.	3.5	23
21	Use of Electrochemical Biosensor and Gas Chromatography for Determination of Dichlorvos in Wheat. Journal of Agricultural and Food Chemistry, 2005, 53, 9389-9394.	5.2	22
22	A Contribution to the Harmonization of Non-targeted NMR Methods for Data-Driven Food Authenticity Assessment. Food Analytical Methods, 2020, 13, 530-541.	2.6	21
23	Investigating the impact of botanical origin and harvesting period on carbon stable isotope ratio values (¹³ C/ ¹² C) and different parameter analysis of Greek unifloral honeys: A chemometric approach for correct botanical discrimination. International Journal of Food Science and Technology. 2016. 51. 2460-2467.	2.7	20
24	Rose Bengal-photosensitized oxidation of 4-thiothymidine in aqueous medium: evidence for the reaction of the nucleoside with singlet state oxygen. Physical Chemistry Chemical Physics, 2015, 17, 26307-26319.	2.8	17
25	Aflatoxin B1-Adsorbing Capability of Pleurotus eryngii Mycelium: Efficiency and Modeling of the Process. Frontiers in Microbiology, 2019, 10, 1386.	3.5	17
26	Scanning Electrochemical Microscopy of the Photosynthetic Reaction Center ofRhodobactersphaeroidesin Different Environmental Systems. Analytical Chemistry, 2006, 78, 5046-5051.	6.5	15
27	pH-related features and photostability of 4-thiothymidine in aqueous solution: an investigation by UV-visible, NMR and FTIR-ATR spectroscopies and by electrospray ionization mass spectrometry. RSC Advances, 2014, 4, 48804-48814.	3.6	14
28	A community-built calibration system: The case study of quantification of metabolites in grape juice by qNMR spectroscopy. Talanta, 2020, 214, 120855.	5.5	14
29	Quality evaluation of table grapes during storage by using 1H NMR, LC-HRMS, MS-eNose and multivariate statistical analysis. Food Chemistry, 2020, 315, 126247.	8.2	14
30	Rapid screening of olive oil cultivar differentiation based on selected physicochemical parameters, pigment content and fatty acid composition using advanced chemometrics. European Food Research and Technology, 2019, 245, 2027-2038.	3.3	13
31	Electrochemical characterization of species involved in photosynthesis: from proteins to model systems. Journal of Electroanalytical Chemistry, 2004, 564, 35-43.	3.8	11
32	Electronic Nose in Combination with Chemometrics for Characterization of Geographical Origin and Agronomic Practices of Table Grape. Food Analytical Methods, 2019, 12, 1229-1237.	2.6	11
33	Tracing the Geographical Origin of Lentils (Lens culinaris Medik.) by Infrared Spectroscopy and Chemometrics. Food Analytical Methods, 2019, 12, 773-779.	2.6	11
34	lsotope ratio mass spectrometry in combination with chemometrics for characterization of geographical origin and agronomic practices of table grape. Journal of the Science of Food and Agriculture, 2017, 97, 3173-3180.	3.5	10
35	Analysis of peroxide value in olive oils with an easy and green method. Food Control, 2021, 130, 108295.	5.5	9
36	Photosystem II based multilayers obtained by electrostatic layer-by-layer assembly on quartz substrates. Journal of Bioenergetics and Biomembranes, 2014, 46, 221-228.	2.3	5

#	Article	IF	CITATIONS
37	Paving the Way to Food Grade Analytical Chemistry: Use of a Natural Deep Eutectic Solvent to Determine Total Hydroxytyrosol and Tyrosol in Extra Virgin Olive Oils. Foods, 2021, 10, 677.	4.3	3
38	Interactions between cyclodextrins and fluorescent T-2 and HT-2 toxin derivatives: a physico-chemical study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 75, 285-292.	1.6	2
39	Physico-Chemical Investigation on the Interaction Between Ochratoxin A and Heptakis-2,6-di-O-Methyl-12-Cyclodextrin. Journal of Solution Chemistry, 2014, 43, 1436-1447.	1.2	2