Hyeyoung Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/810935/publications.pdf

Version: 2024-02-01

22 papers 2,623 citations

331538 21 h-index 610775 24 g-index

24 all docs

24 docs citations

times ranked

24

4024 citing authors

#	Article	IF	Citations
1	Peroxymonosulfate activation by black TiO2 nanotube arrays under solar light: Switching the activation mechanism and enhancing catalytic activity and stability. Journal of Hazardous Materials, 2022, 433, 128796.	6.5	24
2	Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nature Catalysis, 2021, 4, 36-45.	16.1	189
3	Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4, 212-222.	16.1	266
4	Lattice Engineering to Simultaneously Control the Defect/Stacking Structures of Layered Double Hydroxide Nanosheets to Optimize Their Energy Functionalities. ACS Nano, 2021, 15, 8306-8318.	7.3	49
5	Doubleâ€Exchangeâ€Induced in situ Conductivity in Nickelâ€Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 16448-16456.	7.2	63
6	Doubleâ€Exchangeâ€Induced in situ Conductivity in Nickelâ€Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 16584-16592.	1.6	3
7	Catalytic Interplay of Ga, Pt, and Ce on the Alumina Surface Enabling High Activity, Selectivity, and Stability in Propane Dehydrogenation. ACS Catalysis, 2021, 11, 10767-10777.	5. 5	28
8	Photochemically deposited Ir-doped NiCo oxyhydroxide nanosheets provide highly efficient and stable electrocatalysts for the oxygen evolution reaction. Nano Energy, 2020, 75, 104885.	8.2	30
9	Ga–Doped Pt–Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. Nano Letters, 2018, 18, 2450-2458.	4.5	125
10	Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5872-5877.	3 . 3	380
11	A hydro/oxo-phobic top hole-selective layer for efficient and stable colloidal quantum dot solar cells. Energy and Environmental Science, 2018, 11, 2078-2084.	15.6	41
12	In Silico Discovery of New Dopants for Fe-Doped Ni Oxyhydroxide (Ni _{1–<i>x</i>} Fe _{<i>x</i>} OOH) Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 6745-6748.	6.6	274
13	Laser-induced phase separation of silicon carbide. Nature Communications, 2016, 7, 13562.	5.8	75
14	2D Covalent Metals: A New Materials Domain of Electrochemical CO ₂ Conversion with Broken Scaling Relationship. Journal of Physical Chemistry Letters, 2016, 7, 4124-4129.	2.1	54
15	Highly Efficient, Selective, and Stable CO ₂ Electroreduction on a Hexagonal Zn Catalyst. Angewandte Chemie, 2016, 128, 9443-9446.	1.6	61
16	Highly Efficient, Selective, and Stable CO ₂ Electroreduction on a Hexagonal Zn Catalyst. Angewandte Chemie - International Edition, 2016, 55, 9297-9300.	7.2	304
17	A mechanistic model for hydrogen activation, spillover, and its chemical reaction in a zeolite-encapsulated Pt catalyst. Physical Chemistry Chemical Physics, 2016, 18, 7035-7041.	1.3	38
18	Nitrite Reduction Mechanism on a Pd Surface. Environmental Science & Environme	4.6	188

#	Article	IF	CITATION
19	Selective Dissociation of Dihydrogen over Dioxygen on a Hindered Platinum Surface for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem, 2014, 6, 2836-2842.	1.8	23
20	Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nature Communications, 2014, 5, 3370.	5.8	181
21	Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO ₂ . Journal of the American Chemical Society, 2014, 136, 11355-11361.	6.6	192
22	First-Principles Design of Hydrogen Dissociation Catalysts Based on Isoelectronic Metal Solid Solutions. Journal of Physical Chemistry Letters, 2014, 5, 1819-1824.	2.1	26