Pedro Talhinhas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/810916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Analysis of Partial Sequences of the Flavonone 3 Hydroxylase Gene in Lupinus mutabilis Reveals Differential Expression of Two Paralogues Potentially Related to Seed Coat Colour. Agronomy, 2022, 12, 450.	3.0	1
2	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
3	Diversification of Aeonium Species Across Macaronesian Archipelagos: Correlations Between Genome-Size Variation and Their Conservation Status. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
4	Metabarcoding reveals southern hemisphere fungal endophytes within wood of cultivated Proteaceae in Portugal. European Journal of Plant Pathology, 2021, 160, 173-184.	1.7	7
5	The use of flow cytometry for fungal nuclear DNA quantification. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 343-347.	1.5	4
6	Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy, 2021, 11, 1041.	3.0	14
7	Exploring physicochemical and cytogenomic diversity of African cowpea and common bean. Scientific Reports, 2021, 11, 12838.	3.3	7
8	Diversity and Cytogenomic Characterization of Wild Carrots in the Macaronesian Islands. Plants, 2021, 10, 1954.	3.5	3
9	Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity, 2021, 110, 109-198.	12.3	79
10	Genetic and Genomic Diversity in a Tarwi (Lupinus mutabilis Sweet) Germplasm Collection and Adaptability to Mediterranean Climate Conditions. Agronomy, 2020, 10, 21.	3.0	23
11	State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy, 2020, 10, 1038.	3.0	20
12	The genetic legacy of fragmentation and overexploitation in the threatened medicinal African pepper-bark tree, Warburgia salutaris. Scientific Reports, 2020, 10, 19725.	3.3	10
13	Genetic Diversity among Cowpea (Vigna unguiculata (L.) Walp.) Landraces Suggests Central Mozambique as an Important Hotspot of Variation. Agronomy, 2020, 10, 1893.	3.0	11
14	Urban and rural household energy consumption and deforestation patterns in Zaire province, Northern Angola: A landscape approach. Applied Geography, 2020, 119, 102207.	3.7	23
15	Response to Anthracnose in a Tarwi (Lupinus mutabilis) Collection Is Influenced by Anthocyanin Pigmentation. Plants, 2020, 9, 583.	3.5	11
16	Pathological and Epidemiological Characterization of First Outbreak of Daylily Rust in Europe and Evaluation of Puccinia hemerocallidis Resistance in Hemerocallis Cultivars. Plants, 2020, 9, 427.	3.5	3
17	Pathological, Morphological, Cytogenomic, Biochemical and Molecular Data Support the Distinction between Colletotrichum cigarro comb. et stat. nov. and Colletotrichum kahawae. Plants, 2020, 9, 502.	3.5	21
18	Petro-Landscapes: Urban Expansion and Energy Consumption in Mbanza Kongo City, Northern Angola. Human Ecology, 2019, 47, 565-575.	1.4	5

Pedro Talhinhas

#	Article	IF	CITATIONS
19	Dynamics of change in a â€~female farming system', Mbanza Kongo/Northern Angola. Journal of Peasant Studies, 2019, 46, 258-275.	4.5	3
20	Olive anthracnose: a yield―and oil qualityâ€degrading disease caused by several species of <i>Colletotrichum</i> that differ in virulence, host preference and geographical distribution. Molecular Plant Pathology, 2018, 19, 1797-1807.	4.2	48
21	Validation of standards suitable for genome size estimation of fungi. Journal of Microbiological Methods, 2017, 142, 76-78.	1.6	13
22	The coffee leaf rust pathogen <i>Hemileia vastatrix</i> : one and a half centuries around the tropics. Molecular Plant Pathology, 2017, 18, 1039-1051.	4.2	157
23	The Colletotrichum acutatum Species Complex as a Model System to Study Evolution and Host Specialization in Plant Pathogens. Frontiers in Microbiology, 2017, 8, 2001.	3.5	61
24	Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karstii as species preferentially associated with lemon twig dieback in Portugal. Phytoparasitica, 2016, 44, 549-561.	1.2	34
25	Legitimacy and Implications of Reducing Colletotrichum kahawae to Subspecies in Plant Pathology. Frontiers in Plant Science, 2016, 7, 2051.	3.6	35
26	First Report of <i>Puccinia hemerocallidis</i> Causing Daylily Rust in Europe. Plant Disease, 2016, 100, 2163.	1.4	5
27	First Report of <i>Puccinia thaliae</i> Causing Rust on <i>Canna</i> spp. in Europe. Plant Disease, 2016, 100, 1242-1242.	1.4	5
28	Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae. PLoS ONE, 2016, 11, e0150651.	2.5	14
29	Yield and seed chemical composition of Lupinus mutabilis in Portugal. Revista De Ciências Agrárias, 2016, 39, 518-525.	0.2	13
30	Avaliação da resistência à antracnose em germoplasma de Lupinus spp Revista De Ciências Agrárias, 2016, 39, 550-570.	0.2	2
31	Genomic Patterns of Positive Selection at the Origin of Rust Fungi. PLoS ONE, 2015, 10, e0143959.	2.5	20
32	A method for obtaining RNA from Hemileia vastatrix appressoria produced in planta, suitable for transcriptomic analyses. Fungal Biology, 2015, 119, 1093-1099.	2.5	7
33	Virulence diversity of anthracnose pathogens (Colletotrichum acutatum and C. gloeosporioides) Tj ETQq1 1 0.7 Pathology, 2015, 142, 73-83.	84314 rgBT 1.7	Överlock
34	Flow cytometry reveals that the rust fungus, <i><scp>U</scp>romyces bidentis</i> (<scp>P</scp> ucciniales), possesses the largest fungal genome reported—2489 <scp>M</scp> bp. Molecular Plant Pathology, 2015, 16, 1006-1010.	4.2	24
35	Genome size analyses of Pucciniales reveal the largest fungal genomes. Frontiers in Plant Science, 2014, 5, 422.	3.6	86
36	Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. Frontiers in Plant Science, 2014, 5, 88.	3.6	25

Pedro Talhinhas

#	Article	IF	CITATIONS
37	12 Rust Fungi: Achievements and Future Challenges on Genomics and Host–Parasite Interactions. , 2013, , 315-341.		1
38	Application of the <i>Apn2/MAT</i> locus to improve the systematics of the <i>Colletotrichum gloeosporioides</i> complex: an example from coffee (<i>Coffea</i> spp.) hosts. Mycologia, 2012, 104, 396-409.	1.9	152
39	Expression profiling of genes involved in the biotrophic colonisation of Coffea arabica leaves by Hemileia vastatrix. European Journal of Plant Pathology, 2012, 133, 261-277.	1.7	14
40	Cellular and molecular analyses of coffee resistance to Hemileia vastatrix and nonhost resistance to Uromyces vignae in the resistance-donor genotype HDT832/2. European Journal of Plant Pathology, 2012, 133, 141-157.	1.7	32
41	454â€pyrosequencing of <i>Coffea arabica</i> leaves infected by the rust fungus <i>Hemileia vastatrix</i> reveals <i>in planta</i> â€expressed pathogenâ€secreted proteins and plant functions in a late compatible plant–rust interaction. Molecular Plant Pathology, 2012, 13, 17-37.	4.2	81
42	Hostâ€ j ump drives rapid and recent ecological speciation of the emergent fungal pathogen <i>Colletotrichum kahawae</i> . Molecular Ecology, 2012, 21, 2655-2670.	3.9	72
43	Magnaporthe oryzae Populations Adapted to Finger Millet and Rice Exhibit Distinctive Patterns of Genetic Diversity, Sexuality and Host Interaction. Molecular Biotechnology, 2012, 50, 145-158.	2.4	72
44	Validation of RT-qPCR reference genes for in planta expression studies in Hemileia vastatrix, the causal agent of coffee leaf rust. Fungal Biology, 2011, 115, 891-901.	2.5	36
45	Epidemiology, histopathology and aetiology of olive anthracnose caused by <i>Colletotrichum acutatum</i> and <i>C.Âgloeosporioides</i> in Portugal. Plant Pathology, 2011, 60, 483-495.	2.4	69
46	Characterization of <i>Colletotrichum kahawae</i> Isolates Causing Coffee Berry Disease in Angola. Journal of Phytopathology, 2010, 158, 310-313.	1.0	15
47	Non-host resistance responses of <i>Arabidopsis thaliana</i> to the coffee leaf rust fungus (<i>Hemileia vastatrix</i>). Botany, 2010, 88, 621-629.	1.0	22
48	The distinctive population structure ofColletotrichumspecies associated with olive anthracnose in the Algarve region of Portugal reflects a host–pathogen diversity hot spot. FEMS Microbiology Letters, 2009, 296, 31-38.	1.8	42
49	Agrobacterium-Mediated Transformation and Insertional Mutagenesis in Colletotrichum acutatum for Investigating Varied Pathogenicity Lifestyles. Molecular Biotechnology, 2008, 39, 57-67.	2.4	53
50	Collection of Lupinus angustifolius L. Germplasm and Characterisation of Morphological and Molecular Diversity. Genetic Resources and Crop Evolution, 2006, 53, 563-578.	1.6	20
51	Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Molecular Plant Pathology, 2005, 6, 361-378.	4.2	144
52	Molecular and Phenotypic Analyses Reveal Association of Diverse Colletotrichum acutatum Groups and a Low Level of C. gloeosporioides with Olive Anthracnose. Applied and Environmental Microbiology, 2005, 71, 2987-2998.	3.1	156
53	AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp Plant Breeding, 2003, 122, 507-510.	1.9	32
54	Genetic and Morphological Characterization of Colletotrichum acutatum Causing Anthracnose of Lupins. Phytopathology, 2002, 92, 986-996.	2.2	125