Pedro Talhinhas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/810916/publications.pdf

Version: 2024-02-01

54 papers

1,990 citations

304743 22 h-index 254184 43 g-index

54 all docs

54 docs citations

54 times ranked 1978 citing authors

#	Article	IF	CITATIONS
1	The coffee leaf rust pathogen <i>Hemileia vastatrix</i> : one and a half centuries around the tropics. Molecular Plant Pathology, 2017, 18, 1039-1051.	4.2	157
2	Molecular and Phenotypic Analyses Reveal Association of Diverse Colletotrichum acutatum Groups and a Low Level of C. gloeosporioides with Olive Anthracnose. Applied and Environmental Microbiology, 2005, 71, 2987-2998.	3.1	156
3	Application of the <i>Apn2/MAT</i> locus to improve the systematics of the <i>Colletotrichum gloeosporioides</i> complex: an example from coffee (<i>Coffea</i> spp.) hosts. Mycologia, 2012, 104, 396-409.	1.9	152
4	Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Molecular Plant Pathology, 2005, 6, 361-378.	4.2	144
5	Genetic and Morphological Characterization of Colletotrichum acutatum Causing Anthracnose of Lupins. Phytopathology, 2002, 92, 986-996.	2.2	125
6	Genome size analyses of Pucciniales reveal the largest fungal genomes. Frontiers in Plant Science, 2014, 5, 422.	3.6	86
7	454â€pyrosequencing of <i>Coffea arabica</i> leaves infected by the rust fungus <i>Hemileia vastatrix</i> reveals <i>in planta</i> â€expressed pathogenâ€secreted proteins and plant functions in a late compatible plant–rust interaction. Molecular Plant Pathology, 2012, 13, 17-37.	4.2	81
8	Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity, 2021, 110, 109-198.	12.3	79
9	Hostâ€jump drives rapid and recent ecological speciation of the emergent fungal pathogen <i>Colletotrichum kahawae</i> . Molecular Ecology, 2012, 21, 2655-2670.	3.9	72
10	Magnaporthe oryzae Populations Adapted to Finger Millet and Rice Exhibit Distinctive Patterns of Genetic Diversity, Sexuality and Host Interaction. Molecular Biotechnology, 2012, 50, 145-158.	2.4	72
11	Epidemiology, histopathology and aetiology of olive anthracnose caused by <i>Colletotrichum acutatum</i> and <i>C.Âgloeosporioides</i> in Portugal. Plant Pathology, 2011, 60, 483-495.	2.4	69
12	The Colletotrichum acutatum Species Complex as a Model System to Study Evolution and Host Specialization in Plant Pathogens. Frontiers in Microbiology, 2017, 8, 2001.	3.5	61
13	Agrobacterium-Mediated Transformation and Insertional Mutagenesis in Colletotrichum acutatum for Investigating Varied Pathogenicity Lifestyles. Molecular Biotechnology, 2008, 39, 57-67.	2.4	53
14	Olive anthracnose: a yield―and oil qualityâ€degrading disease caused by several species of <i>Colletotrichum</i> that differ in virulence, host preference and geographical distribution. Molecular Plant Pathology, 2018, 19, 1797-1807.	4.2	48
15	The distinctive population structure ofColletotrichumspecies associated with olive anthracnose in the Algarve region of Portugal reflects a host–pathogen diversity hot spot. FEMS Microbiology Letters, 2009, 296, 31-38.	1.8	42
16	Virulence diversity of anthracnose pathogens (Colletotrichum acutatum and C. gloeosporioides) Tj ETQq0 0 0 rg Pathology, 2015, 142, 73-83.	gBT /Overlo 1.7	ock 10 Tf 50 1 38
17	Validation of RT-qPCR reference genes for in planta expression studies in Hemileia vastatrix, the causal agent of coffee leaf rust. Fungal Biology, 2011, 115, 891-901.	2.5	36
18	Legitimacy and Implications of Reducing Colletotrichum kahawae to Subspecies in Plant Pathology. Frontiers in Plant Science, 2016, 7, 2051.	3.6	35

#	Article	IF	CITATIONS
19	Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karstii as species preferentially associated with lemon twig dieback in Portugal. Phytoparasitica, 2016, 44, 549-561.	1.2	34
20	AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp Plant Breeding, 2003, 122, 507-510.	1.9	32
21	Cellular and molecular analyses of coffee resistance to Hemileia vastatrix and nonhost resistance to Uromyces vignae in the resistance-donor genotype HDT832/2. European Journal of Plant Pathology, 2012, 133, 141-157.	1.7	32
22	Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. Frontiers in Plant Science, 2014, 5, 88.	3.6	25
23	Flow cytometry reveals that the rust fungus, <i><scp>U</scp>romyces bidentis</i> (<scp>P</scp> ucciniales), possesses the largest fungal genome reported—2489 <scp>M</scp> bp. Molecular Plant Pathology, 2015, 16, 1006-1010.	4.2	24
24	Genetic and Genomic Diversity in a Tarwi (Lupinus mutabilis Sweet) Germplasm Collection and Adaptability to Mediterranean Climate Conditions. Agronomy, 2020, 10, 21.	3.0	23
25	Urban and rural household energy consumption and deforestation patterns in Zaire province, Northern Angola: A landscape approach. Applied Geography, 2020, 119, 102207.	3.7	23
26	Non-host resistance responses of <i>Arabidopsis thaliana</i> to the coffee leaf rust fungus (<i>Hemileia vastatrix</i>). Botany, 2010, 88, 621-629.	1.0	22
27	Pathological, Morphological, Cytogenomic, Biochemical and Molecular Data Support the Distinction between Colletotrichum cigarro comb. et stat. nov. and Colletotrichum kahawae. Plants, 2020, 9, 502.	3.5	21
28	Collection of Lupinus angustifolius L. Germplasm and Characterisation of Morphological and Molecular Diversity. Genetic Resources and Crop Evolution, 2006, 53, 563-578.	1.6	20
29	Genomic Patterns of Positive Selection at the Origin of Rust Fungi. PLoS ONE, 2015, 10, e0143959.	2.5	20
30	State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy, 2020, 10, 1038.	3.0	20
31	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
32	Characterization of <i>Colletotrichum kahawae </i> Isolates Causing Coffee Berry Disease in Angola. Journal of Phytopathology, 2010, 158, 310-313.	1.0	15
33	Expression profiling of genes involved in the biotrophic colonisation of Coffea arabica leaves by Hemileia vastatrix. European Journal of Plant Pathology, 2012, 133, 261-277.	1.7	14
34	Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy, 2021, 11, 1041.	3.0	14
35	Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae. PLoS ONE, 2016, 11, e0150651.	2.5	14
36	Validation of standards suitable for genome size estimation of fungi. Journal of Microbiological Methods, 2017, 142, 76-78.	1.6	13

#	Article	IF	CITATIONS
37	Yield and seed chemical composition of Lupinus mutabilis in Portugal. Revista De Ciências Agrárias, 2016, 39, 518-525.	0.2	13
38	Genetic Diversity among Cowpea (Vigna unguiculata (L.) Walp.) Landraces Suggests Central Mozambique as an Important Hotspot of Variation. Agronomy, 2020, 10, 1893.	3.0	11
39	Response to Anthracnose in a Tarwi (Lupinus mutabilis) Collection Is Influenced by Anthocyanin Pigmentation. Plants, 2020, 9, 583.	3.5	11
40	The genetic legacy of fragmentation and overexploitation in the threatened medicinal African pepper-bark tree, Warburgia salutaris. Scientific Reports, 2020, 10, 19725.	3.3	10
41	A method for obtaining RNA from Hemileia vastatrix appressoria produced in planta, suitable for transcriptomic analyses. Fungal Biology, 2015, 119, 1093-1099.	2.5	7
42	Metabarcoding reveals southern hemisphere fungal endophytes within wood of cultivated Proteaceae in Portugal. European Journal of Plant Pathology, 2021, 160, 173-184.	1.7	7
43	Exploring physicochemical and cytogenomic diversity of African cowpea and common bean. Scientific Reports, 2021, 11, 12838.	3.3	7
44	Petro-Landscapes: Urban Expansion and Energy Consumption in Mbanza Kongo City, Northern Angola. Human Ecology, 2019, 47, 565-575.	1.4	5
45	First Report of <i>Puccinia hemerocallidis</i> Causing Daylily Rust in Europe. Plant Disease, 2016, 100, 2163.	1.4	5
46	First Report of <i>Puccinia thaliae</i> Causing Rust on <i>Canna</i> spp. in Europe. Plant Disease, 2016, 100, 1242-1242.	1.4	5
47	Diversification of Aeonium Species Across Macaronesian Archipelagos: Correlations Between Genome-Size Variation and Their Conservation Status. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
48	The use of flow cytometry for fungal nuclear DNA quantification. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 343-347.	1.5	4
49	Dynamics of change in a †female farming system', Mbanza Kongo/Northern Angola. Journal of Peasant Studies, 2019, 46, 258-275.	4.5	3
50	Pathological and Epidemiological Characterization of First Outbreak of Daylily Rust in Europe and Evaluation of Puccinia hemerocallidis Resistance in Hemerocallis Cultivars. Plants, 2020, 9, 427.	3.5	3
51	Diversity and Cytogenomic Characterization of Wild Carrots in the Macaronesian Islands. Plants, 2021, 10, 1954.	3.5	3
52	Avaliação da resistência à antracnose em germoplasma de Lupinus spp Revista De Ciências Agrárias, 2016, 39, 550-570.	0.2	2
53	12 Rust Fungi: Achievements and Future Challenges on Genomics and Host–Parasite Interactions. , 2013, , 315-341.		1
54	The Analysis of Partial Sequences of the Flavonone 3 Hydroxylase Gene in Lupinus mutabilis Reveals Differential Expression of Two Paralogues Potentially Related to Seed Coat Colour. Agronomy, 2022, 12, 450.	3.0	1