Jarvist M Frost

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8109118/jarvist-m-frost-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65	10,232	45	72
papers	citations	h-index	g-index
72	11,456 ext. citations	12	6.68
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
65	The Role of Long-Alkyl-Group Spacers in Glycolated Copolymers for High Performance Organic Electrochemical Transistors <i>Advanced Materials</i> , 2022 , e2202574	24	2
64	High Power Irradiance Dependence of Charge Species Dynamics in Hybrid Perovskites and Kinetic Evidence for Transient Vibrational Stark Effect in Formamidinium. <i>Nanomaterials</i> , 2022 , 12, 1616	5.4	
63	Accelerated Hot-Carrier Cooling in MAPbI Perovskite by Pressure-Induced Lattice Compression. Journal of Physical Chemistry Letters, 2021 , 12, 4118-4124	6.4	2
62	Giant Huang-Rhys Factor for Electron Capture by the Iodine Intersitial in Perovskite Solar Cells. Journal of the American Chemical Society, 2021 , 143, 9123-9128	16.4	11
61	Multipulse Terahertz Spectroscopy Unveils Hot Polaron Photoconductivity Dynamics in Metal-Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8732-8739	6.4	3
60	Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. <i>Journal of Chemical Physics</i> , 2020 , 152, 024703	3.9	28
59	Descriptors for Electron and Hole Charge Carriers in Metal Oxides. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 438-444	6.4	15
58	Atomistic insights into the orderdisorder transition in Cu2ZnSnS4 solar cells from Monte Carlo simulations. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 312-321	13	14
57	Dielectric and ferroic properties of metal halide perovskites. APL Materials, 2019, 7, 010901	5.7	108
56	Relating Chain Conformation to the Density of States and Charge Transport in Conjugated Polymers: The Role of the Ephase in Poly(9,9-dioctylfluorene). <i>Physical Review X</i> , 2019 , 9,	9.1	10
55	Impact of nonparabolic electronic band structure on the optical and transport properties of photovoltaic materials. <i>Physical Review B</i> , 2019 , 99,	3.3	33
54	Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1622-1626	16.4	48
53	Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. <i>ACS Energy Letters</i> , 2018 , 3, 2199-2205	20.1	79
52	PolaronMobility.jl: Implementation of the Feynman variational polaron model. <i>Journal of Open Source Software</i> , 2018 , 3, 566	5.2	2
51	Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11905-11910	11.5	52
50	Rotational Cation Dynamics in Metal Halide Perovskites: Effect on Phonons and Material Properties. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5987-5997	6.4	45
49	Polaron States in Fullerene Adducts Modeled by Coarse-Grained Molecular Dynamics and Tight Binding. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 6616-6623	6.4	6

(2015-2017)

48	Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4068-4074	16.4	87
47	Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11073-11080	16.4	71
46	Perspective: Theory and simulation of hybrid halide perovskites. <i>Journal of Chemical Physics</i> , 2017 , 146, 220901	3.9	87
45	Indirect to direct bandgap transition in methylammonium lead halide perovskite. <i>Energy and Environmental Science</i> , 2017 , 10, 509-515	35.4	237
44	Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2647-2652	20.1	94
43	Spontaneous Octahedral Tilting in the Cubic Inorganic Cesium Halide Perovskites CsSnX and CsPbX (X = F, Cl, Br, I). <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4720-4726	6.4	126
42	Emergent Properties of an Organic Semiconductor Driven by its Molecular Chirality. <i>ACS Nano</i> , 2017 , 11, 8329-8338	16.7	90
41	Calculating polaron mobility in halide perovskites. <i>Physical Review B</i> , 2017 , 96,	3.3	119
40	Computational Screening of All Stoichiometric Inorganic Materials. <i>CheM</i> , 2016 , 1, 617-627	16.2	72
39	Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27051-27066	3.6	243
38	Computational materials design of crystalline solids. <i>Chemical Society Reviews</i> , 2016 , 45, 6138-6146	58.5	72
37	What Is Moving in Hybrid Halide Perovskite Solar Cells?. <i>Accounts of Chemical Research</i> , 2016 , 49, 528-3	524.3	319
36	Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory. <i>Physical Review B</i> , 2016 , 94,	3.3	101
35	Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells. <i>APL Materials</i> , 2016 , 4, 091501	5.7	153
34	Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite. <i>ACS Energy Letters</i> , 2016 , 1, 880-887	20.1	177
33	Molecular Motion and Dynamic Crystal Structures of Hybrid Halide Perovskites 2016 , 1-17		6
32	Cubic Perovskite Structure of Black Formamidinium Lead Iodide, [[HC(NH2)2]PbI3, at 298 K. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3209-3212	6.4	343
31	Ionic transport in hybrid lead iodide perovskite solar cells. <i>Nature Communications</i> , 2015 , 6, 7497	17.4	1649

30	Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. <i>Chemical Communications</i> , 2015 , 51, 8935-8	5.8	51
29	Polaron pair mediated triplet generation in polymer/fullerene blends. <i>Nature Communications</i> , 2015 , 6, 6501	17.4	65
28	Influence of Intermolecular Interactions on the Reorganization Energy of Charge Transfer between Surface-Attached Dye Molecules. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 24337-24341	3.8	13
27	Role of Microstructure in the Electron-Hole Interaction of Hybrid Lead-Halide Perovskites. <i>Nature Photonics</i> , 2015 , 9, 695-701	33.9	203
26	Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3663-9	6.4	281
25	Ferroelectric materials for solar energy conversion: photoferroics revisited. <i>Energy and Environmental Science</i> , 2015 , 8, 838-848	35.4	260
24	Models of charge pair generation in organic solar cells. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 2311-2325	3.6	135
23	Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. <i>Materials Horizons</i> , 2015 , 2, 228-231	14.4	198
22	Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. <i>Physical Review B</i> , 2015 , 92,	3.3	360
21	The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. <i>Nature Communications</i> , 2015 , 6, 7124	17.4	446
20	Influence of a nearby substrate on the reorganization energy of hole exchange between dye molecules. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 7345-54	3.6	11
19	Distinguishing the influence of structural and energetic disorder on electron transport in fullerene multi-adducts. <i>Materials Horizons</i> , 2015 , 2, 113-119	14.4	42
18	Atomistic origins of high-performance in hybrid halide perovskite solar cells. <i>Nano Letters</i> , 2014 , 14, 25	84-1959	1756
17	Influence of Bridging Atom and Side Chains on the Structure and Crystallinity of Cyclopentadithiophene B enzothiadiazole Polymers. <i>Chemistry of Materials</i> , 2014 , 26, 1226-1233	9.6	48
16	Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. <i>APL Materials</i> , 2014 , 2, 081506	5.7	443
15	Influence of Chemical Structure on the Charge Transfer State Spectrum of a Polymer:Fullerene Complex. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8253-8261	3.8	56
14	Effect of Molecular Fluctuations on Hole Diffusion within Dye Monolayers. <i>Chemistry of Materials</i> , 2014 , 26, 4731-4740	9.6	20
13	Parameter free calculation of the subgap density of states in poly(3-hexylthiophene). <i>Faraday Discussions</i> , 2014 , 174, 255-66	3.6	28

LIST OF PUBLICATIONS

12	Controlling microstructure of pentacene derivatives by solution processing: impact of structural anisotropy on optoelectronic properties. <i>ACS Nano</i> , 2013 , 7, 7983-91	16.7	73
11	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. <i>Chemistry of Materials</i> , 2013 , 25, 4239-4249	9.6	50
10	Effect of Fluorination on the Properties of a DonorAcceptor Copolymer for Use in Photovoltaic Cells and Transistors. <i>Chemistry of Materials</i> , 2013 , 25, 277-285	9.6	201
9	Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability. <i>Journal of Applied Physics</i> , 2011 , 110, 014506	2.5	18
8	A numerical study of mobility in thin films of fullerene derivatives. <i>Journal of Chemical Physics</i> , 2010 , 132, 064904	3.9	79
7	Energetic disorder in higher fullerene adducts: a quantum chemical and voltammetric study. <i>Advanced Materials</i> , 2010 , 22, 4881-4	24	82
6	Modeling charge transport in organic photovoltaic materials. <i>Accounts of Chemical Research</i> , 2009 , 42, 1768-78	24.3	215
5	The effect of morphology on electron field-effect mobility in disordered c60 thin films. <i>Nano Letters</i> , 2009 , 9, 1085-90	11.5	70
4	Zero-point fluctuations in naphthalene and their effect on charge transport parameters. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 9113-7	2.8	13
3	Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions. <i>Advanced Materials</i> , 2008 , 20, 3510-3515	24	342
2	Predictive study of charge transport in disordered semiconducting polymers. <i>Nano Letters</i> , 2007 , 7, 178	8 5£8 .5	77
1	Influence of polymer-blend morphology on charge transport and photocurrent generation in donor-acceptor polymer blends. <i>Nano Letters</i> , 2006 , 6, 1674-81	11.5	91