List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8108617/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Diastolic Stiffness of the Failing Diabetic Heart. Circulation, 2008, 117, 43-51.	1.6	621
2	Low Myocardial Protein Kinase G Activity in Heart Failure With Preserved Ejection Fraction. Circulation, 2012, 126, 830-839.	1.6	418
3	Hypophosphorylation of the Stiff N2B Titin Isoform Raises Cardiomyocyte Resting Tension in Failing Human Myocardium. Circulation Research, 2009, 104, 780-786.	4.5	318
4	Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Failure Reviews, 2012, 17, 325-344.	3.9	287
5	Myocardial Titin Hypophosphorylation Importantly Contributes to Heart Failure With Preserved Ejection Fraction in a Rat Metabolic Risk Model. Circulation: Heart Failure, 2013, 6, 1239-1249.	3.9	241
6	Diabetes Mellitus Worsens Diastolic Left Ventricular Dysfunction in Aortic Stenosis Through Altered Myocardial Structure and Cardiomyocyte Stiffness. Circulation, 2011, 124, 1151-1159.	1.6	196
7	Empagliflozin improves endothelial and cardiomyocyte functionÂin human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovascular Research, 2021, 117, 495-507.	3.8	167
8	Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H2007-H2014.	3.2	128
9	Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis. European Heart Journal Cardiovascular Imaging, 2018, 19, 490-497.	1.2	120
10	The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure, 2018, 20, 445-459.	7.1	118
11	Animal models of heart failure with preserved ejection fraction. Netherlands Heart Journal, 2016, 24, 275-286.	0.8	113
12	Physiological, pathological and potential therapeutic roles of adipokines. Drug Discovery Today, 2012, 17, 880-889.	6.4	111
13	An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. European Journal of Heart Failure, 2018, 20, 216-227.	7.1	81
14	O-GlcNAcylation of Histone Deacetylase 4 Protects the Diabetic Heart From Failure. Circulation, 2019, 140, 580-594.	1.6	77
15	Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 43-59.	3.8	72
16	Effect of hyperglycaemia and diabetes on acute myocardial ischaemia–reperfusion injury and cardioprotection by ischaemic conditioning protocols. British Journal of Pharmacology, 2020, 177, 5312-5335.	5.4	68
17	Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1273-1280.	3.8	64
18	Rodent models of heart failure: an updated review. Heart Failure Reviews, 2013, 18, 219-249.	3.9	62

#	Article	IF	CITATIONS
19	Distinct Endothelial Cell Responses in the Heart and Kidney Microvasculature Characterize the Progression of Heart Failure With Preserved Ejection Fraction in the Obese ZSF1 Rat With Cardiorenal Metabolic Syndrome. Circulation: Heart Failure, 2016, 9, e002760.	3.9	62
20	Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Research in Cardiology, 2011, 106, 801-814.	5.9	54
21	Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic riskâ€related rat model of heart failure with preserved ejection fraction. Acta Physiologica, 2020, 228, e13378.	3.8	51
22	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	3.8	51
23	Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovascular Diabetology, 2016, 15, 126.	6.8	43
24	Hyperlipidaemia and cardioprotection: Animal models for translational studies. British Journal of Pharmacology, 2020, 177, 5287-5311.	5.4	43
25	Echocardiography and invasive hemodynamics during stress testing for diagnosis of heart failure with preserved ejection fraction: an experimental study. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1556-H1563.	3.2	40
26	The apelinergic system: a promising therapeutic target. Expert Opinion on Therapeutic Targets, 2010, 14, 633-645.	3.4	37
27	Nutrient responses and glutamate and proline metabolism in sunflower plants and calli under Na2SO4 stress. Journal of Plant Nutrition and Soil Science, 2002, 165, 366-372.	1.9	36
28	Apelin: a novel neurohumoral modulator of the cardiovascular system. Pathophysiologic importance and potential use as a therapeutic target. Revista Portuguesa De Cardiologia, 2005, 24, 1263-76.	0.5	36
29	Afterload-induced diastolic dysfunction contributes to high filling pressures in experimental heart failure with preserved ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1648-H1654.	3.2	33
30	Synergistic impact of endurance training and intermittent hypobaric hypoxia on cardiac function and mitochondrial energetic and signaling. International Journal of Cardiology, 2013, 168, 5363-5371.	1.7	32
31	Myocardial reverse remodeling: how far can we rewind?. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1402-H1422.	3.2	32
32	Pericardial fluid: an underrated molecular library of heart conditions and a potential vehicle for cardiac therapy. Basic Research in Cardiology, 2019, 114, 10.	5.9	31
33	Pivotal role of microRNAs in cardiac physiology and heart failure. Drug Discovery Today, 2013, 18, 1243-1249.	6.4	30
34	Gender differences in the association of epicardial adipose tissue and coronary artery calcification: EPICHEART study. International Journal of Cardiology, 2017, 249, 419-425.	1.7	30
35	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30
36	Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Frontiers in Physiology, 2020, 11, 345.	2.8	29

#	Article	IF	CITATIONS
37	Early cardiac changes induced by a hypercaloric Western-type diet in "subclinical―obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H655-H666.	3.2	28
38	<i>In vitro</i> model to study the effects of matrix stiffening on Ca ²⁺ handling and myofilament function in isolated adult rat cardiomyocytes. Journal of Physiology, 2017, 595, 4597-4610.	2.9	28
39	Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 2416-2433.	3.8	27
40	Epicardial adipose tissue volume and annexin A2/fetuin-A signalling are linked to coronary calcification in advanced coronary artery disease: Computed tomography and proteomic biomarkers from the EPICHEART study. Atherosclerosis, 2020, 292, 75-83.	0.8	25
41	Relevance of residual left ventricular hypertrophy after surgery for isolated aortic stenosis. European Journal of Cardio-thoracic Surgery, 2016, 49, 952-959.	1.4	23
42	Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Failure Reviews, 2021, 26, 453-478.	3.9	23
43	Cardiac remodelling–ÂPart 2: Clinical, imaging and laboratory findings. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 2022, 24, 944-958.	7.1	22
44	Correlation between plasma levels of apelin and myocardial hypertrophy in rats and humans: possible target for treatment?. Expert Opinion on Therapeutic Targets, 2010, 14, 231-241.	3.4	21
45	Meta-Analysis of Relation of Epicardial Adipose Tissue Volume to Left Atrial Dilation and to Left Ventricular Hypertrophy and Functions. American Journal of Cardiology, 2019, 123, 523-531.	1.6	20
46	Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H459-H475.	3.2	19
47	Can Adiponectin Help us to Target Diastolic Dysfunction?. Cardiovascular Drugs and Therapy, 2016, 30, 635-644.	2.6	18
48	Association of body mass index and visceral fat with aortic valve calcification and mortality after transcatheter aortic valve replacement: the obesity paradox in severe aortic stenosis. Diabetology and Metabolic Syndrome, 2017, 9, 86.	2.7	18
49	Stretch-induced compliance: a novel adaptive biological mechanism following acute cardiac load. Cardiovascular Research, 2018, 114, 656-667.	3.8	18
50	Arterial Remodeling and Dysfunction in the ZSF1 Rat Model of Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2019, 12, e005596.	3.9	17
51	Papel da titina na modulação da função cardÃaca e suas implicações fisiopatológicas. Arquivos Brasileiros De Cardiologia, 2011, 96, 332-339.	0.8	16
52	Thyroid hormones and modulation of diastolic function: a promising target for heart failure with preserved ejection fraction. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882095833.	3.2	16
53	A directed network analysis of the cardiome identifies molecular pathways contributing to the development of HFpEF. Journal of Molecular and Cellular Cardiology, 2020, 144, 66-75.	1.9	16
54	Titin mutations: the fall of Goliath. Heart Failure Reviews, 2015, 20, 579-588.	3.9	15

#	Article	IF	CITATIONS
55	Load independent impairment of reverse remodeling after valve replacement in hypertensive aortic stenosis patients. International Journal of Cardiology, 2014, 170, 324-330.	1.7	14
56	Fenofibrate and Heart Failure Outcomes in Patients With Type 2 Diabetes: Analysis From ACCORD. Diabetes Care, 2022, 45, 1584-1591.	8.6	14
57	Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. International Journal of Cardiology, 2017, 228, 465-480.	1.7	13
58	Circulating Biomarkers of Collagen Metabolism and Prognosis of Heart Failure with Reduced or Mid-Range Ejection Fraction. Current Pharmaceutical Design, 2017, 23, 3217-3223.	1.9	13
59	Remote myocardium gene expression after 30 and 120 min of ischaemia in the rat. Experimental Physiology, 2006, 91, 473-480.	2.0	12
60	Analyses of aqueous humour ghrelin levels of eyes with and without glaucoma. British Journal of Ophthalmology, 2009, 93, 131-132.	3.9	12
61	Effects of Diabetes Mellitus, Pressure-Overload and Their Association on Myocardial Structure and Function. American Journal of Hypertension, 2009, 22, 1190-1198.	2.0	12
62	Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus. International Journal of Cardiology, 2016, 217, 195-204.	1.7	12
63	Spectral transfer function analysis of respiratory hemodynamic fluctuations predicts end-diastolic stiffness in preserved ejection fraction heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H4-H13.	3.2	12
64	Lower free triiodothyronine levels within the reference range are associated with higher cardiovascular mortality: An analysis of the NHANES. International Journal of Cardiology, 2019, 285, 115-120.	1.7	12
65	Non-Coding RNAs as Blood-Based Biomarkers in Cardiovascular Disease. International Journal of Molecular Sciences, 2020, 21, 9285.	4.1	12
66	Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Scientific Reports, 2019, 9, 2956.	3.3	11
67	Neuregulinâ€1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 255-265.	1.9	11
68	Gender Differences in Predictors and Long-Term Mortality of New-Onset Postoperative Atrial Fibrillation Following Isolated Aortic Valve Replacement Surgery. Annals of Thoracic and Cardiovascular Surgery, 2020, 26, 342-351.	0.8	11
69	MicroRNAs and ventricular remodeling in aortic stenosis. Revista Portuguesa De Cardiologia, 2020, 39, 377-387.	0.5	10
70	Unraveling the Role of Epicardial Adipose Tissue in Coronary Artery Disease: Partners in Crime?. International Journal of Molecular Sciences, 2020, 21, 8866.	4.1	10
71	Mining the Biomarker Potential of the Urine Peptidome: From Amino Acids Properties to Proteases. International Journal of Molecular Sciences, 2021, 22, 5940.	4.1	10
72	Increased Transglutaminase 2 Expression and Activity in Rodent Models of Obesity/Metabolic Syndrome and Aging. Frontiers in Physiology, 2020, 11, 560019.	2.8	9

#	Article	IF	CITATIONS
73	Fat Quality Matters: Distinct Proteomic Signatures Between Lean and Obese Cardiac Visceral Adipose Tissue Underlie its Differential Myocardial Impact. Cellular Physiology and Biochemistry, 2020, 54, 384-400.	1.6	9
74	How to use and integrate bioinformatics tools to compare proteomic data from distinct conditions? A tutorial using the pathological similarities between Aortic Valve Stenosis and Coronary Artery Disease as a case-study. Journal of Proteomics, 2018, 171, 37-52.	2.4	8
75	Mitochondrial Reversible Changes Determine Diastolic Function Adaptations During Myocardial (Reverse) Remodeling. Circulation: Heart Failure, 2020, 13, e006170.	3.9	8
76	Characterization of liver changes in ZSF1 rats, an animal model of metabolic syndrome. Revista Espanola De Enfermedades Digestivas, 2017, 109, 491-497.	0.3	8
77	Left Ventricular Hypertrophy in Isolated Aortic Stenosis: Primetime for the Ventricle. Current Pharmaceutical Biotechnology, 2012, 13, 2503-2514.	1.6	8
78	Adipokines and their receptors: potential new targets in cardiovascular diseases. Future Medicinal Chemistry, 2015, 7, 139-157.	2.3	7
79	Pericardial NT-Pro-BNP and GDF-15 as Biomarkers of Atrial Fibrillation and Atrial Matrix Remodeling in Aortic Stenosis. Diagnostics, 2021, 11, 1422.	2.6	6
80	EDTA-functionalized magnetic nanoparticles: A suitable platform for the analysis of low abundance urinary proteins. Talanta, 2017, 170, 81-88.	5.5	5
81	Understanding the Molecular and Cellular Changes Behind Aortic Valve Stenosis. Current Pharmaceutical Biotechnology, 2012, 13, 2485-2496.	1.6	4
82	Modulation of Myocardial Stiffness by β-Adrenergic Stimulation - Its Role in Normal and Failing Heart. Physiological Research, 2011, 60, 599-609.	0.9	4
83	Decoding the radiomic and proteomic phenotype of epicardial adipose tissue associated with adverse left atrial remodelling and post-operative atrial fibrillation in aortic stenosis. European Heart Journal Cardiovascular Imaging, 2022, 23, 1248-1259.	1.2	4
84	A fractionation approach applying chelating magnetic nanoparticles to characterize pericardial fluid's proteome. Archives of Biochemistry and Biophysics, 2017, 634, 1-10.	3.0	3
85	The adult heart requires baseline expression of the transcription factor Hand2 to withstand right ventricular pressure overload. Cardiovascular Research, 2022, 118, 2688-2702.	3.8	3
86	Response to Letter Regarding Article, "Diastolic Stiffness of the Failing Diabetic Heart: Importance of Fibrosis, Advanced Glycation End Products, and Myocyte Resting Tension― Circulation, 2008, 117, .	1.6	2
87	Increased nitrosative/oxidative stress lowers myocardial protein kinase G activity in heart failure with preserved ejection fraction. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	2
88	Animal Models of Cardiovascular Disease. , 2015, , 335-369.		2
89	Methodological approaches and insights on protein aggregation in biological systems. Expert Review of Proteomics, 2017, 14, 55-68.	3.0	2
90	Frailty syndrome: Visceral adipose tissue and frailty in patients with symptomatic severe aortic stenosis. Journal of Nutrition, Health and Aging, 2017, 21, 120-128.	3.3	2

#	Article	IF	CITATIONS
91	Influence of EPICardial adipose tissue in HEART diseases (EPICHEART) study: Protocol for a translational study in coronary atherosclerosis. Revista Portuguesa De Cardiologia, 2020, 39, 625-633.	0.5	2
92	In Vitro Assessment of Cardiac Function Using Skinned Cardiomyocytes. Journal of Visualized Experiments, 2020, , .	0.3	2
93	In Vivo Experimental Assessment of Cardiac Function. , 2015, , 389-411.		2
94	P81Changes on right ventricle induced by a high caloric diet and a left ventricle model of pressure overload. Cardiovascular Research, 2014, 103, S13.4-S13.	3.8	1
95	Rapid Fire - Basic Science 1. European Journal of Heart Failure, 2014, 16, 108-112.	7.1	1
96	Biomarkers of aortic valve stenosis: Should we rely on a single one?. Revista Portuguesa De Cardiologia, 2016, 35, 579-582.	0.5	1
97	Titin phosphorylation by protein kinase G as a novel mechanism of diastolic adaptation to acute load. Porto Biomedical Journal, 2017, 2, 185.	1.0	1
98	EndoProteoFASP as a Tool to Unveil the Peptidome-Protease Profile: Application to Salivary Diagnostics. Methods in Molecular Biology, 2018, 1719, 293-310.	0.9	1
99	Preoperative myocardial expression of E3 ubiquitin ligases in aortic stenosis patients undergoing valve replacement and their association to postoperative hypertrophy. PLoS ONE, 2020, 15, e0237000.	2.5	1
100	Adverse remodeling in atrial fibrillation following isolated aortic valve replacement surgery. Perfusion (United Kingdom), 2020, 36, 026765912094921.	1.0	1
101	The Degree of Cardiac Remodelling before Overload Relief Triggers Different Transcriptome and miRome Signatures during Reverse Remodelling (RR)—Molecular Signature Differ with the Extent of RR. International Journal of Molecular Sciences, 2020, 21, 9687.	4.1	1
102	Studying Left Ventricular Reverse Remodeling by Aortic Debanding in Rodents. Journal of Visualized Experiments, 2021, , .	0.3	1
103	Understanding the molecular and cellular changes behind aortic valve stenosis. Current Pharmaceutical Biotechnology, 2012, 13, 2485-96.	1.6	1
104	Pericardial Fluid Annexin A1 Is a Marker of Atrial Fibrillation in Aortic Stenosis: A Proteomics Analysis. Journal of Personalized Medicine, 2022, 12, 264.	2.5	1
105	Understanding the Molecular and Cellular Changes Behind Aortic Valve Stenosis. Current Pharmaceutical Biotechnology, 2012, 13, 2485-2496.	1.6	0
106	Left Ventricular Hypertrophy in Isolated Aortic Stenosis: Primetime for the Ventricle. Current Pharmaceutical Biotechnology, 2012, 13, 2503-2514.	1.6	0
107	Neuregulin-1 modulates right ventricle cardiomyocyte function in pulmonary arterial hypertension. European Heart Journal, 2013, 34, P5029-P5029.	2.2	0
108	P505Neuregulin-1 ameliorates right ventricular diastolic dysfunction in pulmonary arterial hypertension. Cardiovascular Research, 2014, 103, S92.4-S92.	3.8	0

#	Article	IF	CITATIONS
109	P103Impact of diabetes mellitus on myofilaments phosphorylation and calcium sensitivity is aortic stenosis patients. Cardiovascular Research, 2014, 103, S17.4-S18.	3.8	0
110	Anti-Inflammatory Effects of Exercise Training in a Rat Model of Heart Failure with Preserved Ejection Fraction. Medicine and Science in Sports and Exercise, 2016, 48, 202-203.	0.4	0
111	Exercise Improves Diastolic Function In HFpEF By Reducing Intrinsic Cardiomyocyte Stiffness And Fibrosis. Medicine and Science in Sports and Exercise, 2017, 49, 727.	0.4	0
112	149 The acute decrease of myocardial stiffness induced by beta-adrenergic stimulation is independent of the endocardial endothelium and prostaglandins release. European Journal of Heart Failure, Supplement, 2007, 6, 38-38.	0.0	0
113	Abstract 210: Titin Phosphorylation by Protein Kinase G as a Novel Mechanism of Diastolic Adaptation to Acute Hemodynamic Overload. Circulation Research, 2015, 117, .	4.5	0
114	MON-587 Thyroid Hormones within the Normal Range and Cardiac Function in the General Population: The Epiporto Study. Journal of the Endocrine Society, 2019, 3, .	0.2	0
115	MicroRNAs and ventricular remodeling in aortic stenosis. Revista Portuguesa De Cardiologia (English) Tj ETQq1 1	0.784314 0.2	rgBT /Overlo
116	Influence of EPICardial adipose tissue in HEART diseases (EPICHEART) study: Protocol for a translational study in coronary atherosclerosis. Revista Portuguesa De Cardiologia (English Edition), 2020, 39, 625-633.	0.2	0
117	Title is missing!. , 2020, 15, e0237000.		0
118	Title is missing!. , 2020, 15, e0237000.		0
119	Title is missing!. , 2020, 15, e0237000.		0
120	Title is missing!. , 2020, 15, e0237000.		0

8