Bogdan C Donose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8107928/publications.pdf

Version: 2024-02-01

66 papers

2,958 citations

30 h-index 54 g-index

67 all docs

67 docs citations

times ranked

67

4061 citing authors

#	Article	IF	CITATIONS
1	Effects of Surface Charge and Hydrophobicity on Anodic Biofilm Formation, Community Composition, and Current Generation in Bioelectrochemical Systems. Environmental Science &	4.6	294
2	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. Journal of Materials Chemistry A, 2014, 2, 13093-13102.	5.2	236
3	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy and Environmental Science, 2013, 6, 1291.	15.6	132
4	Flame Oxidation of Stainless Steel Felt Enhances Anodic Biofilm Formation and Current Output in Bioelectrochemical Systems. Environmental Science & Environmental Science & 2014, 48, 7151-7156.	4.6	131
5	The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials, 2011, 32, 4670-4681.	5.7	130
6	Silica Surfaces Lubrication by Hydrated Cations Adsorption from Electrolyte Solutions. Langmuir, 2005, 21, 1834-1839.	1.6	116
7	Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. Energy and Environmental Science, 2012, 5, 7017.	15.6	101
8	The role of iron in sulfide induced corrosion ofÂsewer concrete. Water Research, 2014, 49, 166-174.	5.3	92
9	Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Scientific Reports, 2016, 6, 37389.	1.6	92
10	Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV). European Polymer Journal, 2013, 49, 904-913.	2.6	90
11	Self-assembling polystyrene-block-poly(ethylene oxide) copolymer surface coatings: Resistance to protein and cell adhesion. Biomaterials, 2009, 30, 2449-2456.	5.7	89
12	Effect of alcohol–water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surfaces. Journal of Colloid and Interface Science, 2008, 325, 267-274.	5.0	80
13	Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polymer Degradation and Stability, 2012, 97, 2301-2312.	2.7	80
14	Purification and Conformational Analysis of a Key Exopolysaccharide Component of Mixed Culture Aerobic Sludge Granules. Environmental Science & Enviro	4.6	78
15	A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO ₂ capture and its application in a mixed matrix membrane for CO ₂ /N ₂ separation. Journal of Materials Chemistry A, 2018, 6, 16390-16402.	5.2	78
16	The examination of graphene oxide for rechargeable lithium storage as a novel cathode material. Journal of Materials Chemistry A, 2013, 1, 3607.	5.2	73
17	Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination, 2013, 309, 97-105.	4.0	73
18	Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. Bioelectrochemistry, 2015, 102, 56-63.	2.4	71

#	Article	IF	CITATIONS
19	Direct observation of athermal photofluidisation in azo-polymer films. Soft Matter, 2014, 10, 4640-4647.	1.2	67
20	Modeling Cell Membrane Perturbation by Molecules Designed for Transmembrane Electron Transfer. Langmuir, 2014, 30, 2429-2440.	1.6	55
21	Real-Time Measurements of the Redox States of c-Type Cytochromes in Electroactive Biofilms: A Confocal Resonance Raman Microscopy Study. PLoS ONE, 2014, 9, e89918.	1.1	54
22	Effects of cleaning procedures of silica wafers on their friction characteristics. Journal of Colloid and Interface Science, 2006, 299, 233-237.	5.0	52
23	Oxidised stainless steel: a very effective electrode material for microbial fuel cell bioanodes but at high risk of corrosion. Electrochimica Acta, 2015, 158, 356-360.	2.6	47
24	Removal of the X-ray Contrast Media Diatrizoate by Electrochemical Reduction and Oxidation. Environmental Science & Environmen	4.6	45
25	Virus removal and integrity in aged RO membranes. Water Research, 2016, 90, 167-175.	5. 3	43
26	pH dependence of friction forces between silica surfaces in solutions. Journal of Colloid and Interface Science, 2006, 297, 199-203.	5.0	42
27	The effect of surface treatment and slime coatings on ZnS hydrophobicity. Minerals Engineering, 2008, 21, 958-966.	1.8	38
28	Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems. Biosensors and Bioelectronics, 2013, 47, 184-189.	5.3	37
29	Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochimica Acta, 2013, 108, 566-574.	2.6	35
30	Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential. Water Research, 2020, 174, 115627.	5. 3	35
31	Aggregation of Fullerol C ₆₀ (OH) ₂₄ Nanoparticles as Revealed Using Flow Field-Flow Fractionation and Atomic Force Microscopy. Langmuir, 2010, 26, 16063-16070.	1.6	27
32	Nucleobases modified azoâ€polysiloxanes, materials with potential application in biomolecules nanomanipulation. Journal of Polymer Science Part A, 2007, 45, 4240-4248.	2.5	26
33	Effect of nanobubbles on friction forces between hydrophobic surfaces in water. Journal of Colloid and Interface Science, 2009, 329, 202-207.	5.0	23
34	Analysis of electron transfer dynamics in mixed community electroactive microbial biofilms. RSC Advances, 2016, 6, 3650-3660.	1.7	23
35	Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors. ACS Sustainable Chemistry and Engineering, 2016, 4, 2508-2516.	3.2	20
36	Specific Effects of Divalent Cation Nitrates on the Nanotribology of Silica Surfaces. Industrial & Engineering Chemistry Research, 2006, 45, 7035-7041.	1.8	19

#	Article	IF	CITATIONS
37	Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control. Water Research, 2019, 167, 115032.	5.3	19
38	Understanding the Mobilization of a Nitrification Inhibitor from Novel Slow Release Pellets, Fabricated through Extrusion Processing with PHBV Biopolymer. Journal of Agricultural and Food Chemistry, 2019, 67, 2449-2458.	2.4	18
39	Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. Water Research, 2019, 165, 114996.	5.3	17
40	A synthetic elastomer based on acrylated polypropylene glycol triol with tunable modulus for tissue engineering applications. Biomaterials, 2010, 31, 7937-7947.	5.7	16
41	Electrochemically produced hydrogen bubble probes for gas evolution kinetics and force spectroscopy. Electrochemistry Communications, 2012, 24, 21-24.	2.3	16
42	Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal. Water Research, 2020, 184, 116179.	5.3	15
43	Polymer/Clay Nanocomposites: Influence of Ionic Strength on the Structure and Adhesion Characteristics in Multilayered Films. Macromolecular Materials and Engineering, 2008, 293, 771-780.	1.7	14
44	Reactive nitrogen species from free nitrous acid (FNA) cause cell lysis. Water Research, 2022, 217, 118401.	5.3	13
45	Electrochemical Production of Magnetite Nanoparticles for Sulfide Control in Sewers. Environmental Science & Environmental Sci	4.6	12
46	Near-field terahertz nanoscopy of coplanar microwave resonators. Applied Physics Letters, 2021, 119, .	1.5	10
47	Thermal behaviour and molecular modelling of some aromatic polyethers containing a hexamethylenic spacer. Polymer Degradation and Stability, 2001, 72, 441-445.	2.7	8
48	Surfaceâ€enhanced fluorescence of <i>in situ</i> synthesized polysilanesilver nanoparticles. Polymer International, 2012, 61, 1726-1732.	1.6	8
49	Azo-polymers photofluidisation – a transient state of matter emulated by molecular motors. RSC Advances, 2016, 6, 27087-27093.	1.7	8
50	Towards in situ electro-generation of ferrate for drinking water treatment: A comparison of three low-cost sacrificial iron electrodes. Journal of Electroanalytical Chemistry, 2021, 880, 114897.	1.9	8
51	Effect of aluminium sulphate on interactions between silica surfaces studied by atomic force microscopy. Water Research, 2007, 41, 3449-3457.	5.3	7
52	Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina. Colloids and Surfaces B: Biointerfaces, 2015, 126, 303-312.	2.5	7
53	Combating Antibioticâ€Resistant Gramâ€Negative Bacteria Strains with Tetracyclineâ€Conjugated Carbon Nanoparticles. Advanced Biology, 2020, 4, 2000074.	3.0	7
54	ATRP grafting of styrene from benzyl chloride functionalized polysiloxanes: An AFM and TGA study of the Cu(0)/bpy catalyst. European Polymer Journal, 2006, 42, 119-125.	2.6	5

#	Article	IF	CITATIONS
55	Carbon nanotube air-bubble interactions studied by atomic force microscopy. Advanced Powder Technology, 2009, 20, 257-261.	2.0	5
56	Silica fouling during groundwater RO treatment: The effect of colloids' radius of curvature on dissolution and polymerisation. Water Research, 2020, 168, 115135.	5. 3	4
57	Assessing the effect of aromatic residue placement on the \hat{l}_{\pm} -helical peptide structure and nanofibril formation of 21-mer peptides. Molecular Systems Design and Engineering, 2020, 5, 521-531.	1.7	4
58	Advanced Microscopy of Inorganic Colloids Sampled From Consecutive Stages of RO Filtration. Colloids and Interface Science Communications, 2017, 17, 1-4.	2.0	3
59	Probing Peptide Nanowire Conductivity by THz Nanoscopy. Nanotechnology, 2021, 33, .	1.3	3
60	The effect of ozonation on aggregation of humic substances on mica studied by atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329, 100-105.	2.3	2
61	Selective laser assisted impairment of reverse osmosis membranes. MethodsX, 2020, 7, 100830.	0.7	2
62	Silica-Silica Nanotribology in Electrolyte Solutions Studied by Atomic Force Microscopy. Journal of the Society of Powder Technology, Japan, 2006, 43, 389-389.	0.0	1
63	Silica-polyamide nanofriction in electrolyte solutions: Insights into scaling of RO membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124206.	2.3	1
64	High-resolution micro-computed tomography reveals cracking in a hydrophobic composite; a new mechanism for mobilisation in controlled release applications. Biosystems Engineering, 2021, 203, 44-54.	1.9	1
65	Insight in to the Initial Stages of Silica Scaling Employing a Scanning Electron and Atomic Force Microscopy Approach. Journal of Membrane Science & Technology, 2016, 06, .	0.5	0
66	Imaging and Characterization of Microbial Electrodes. , 2017, , 525-543.		0