Madeline Nieves-Cintron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8107871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering cellular signals in adult mouse sinoatrial node cells. IScience, 2022, 25, 103693.	1.9	4
2	Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cellular and Molecular Life Sciences, 2021, 78, 31-61.	2.4	25
3	Secondhand Smoke Exposure Impairs Ion Channel Function and Contractility of Mesenteric Arteries. Function, 2021, 2, zqab041.	1.1	7
4	S1928 Phosphorylation Tunes Vascular Lâ€ŧype Channel Ca _V 1.2 and Arterial Function during Angiotensin II Signaling and Hypertension. FASEB Journal, 2021, 35, .	0.2	0
5	AKAP5 complex facilitates purinergic modulation of vascular L-type Ca2+ channel CaV1.2. Nature Communications, 2020, 11, 5303.	5.8	22
6	Ion Channels and Their Regulation in Vascular Smooth Muscle. , 2020, , .		0
7	αâ€Actininâ€1 promotes activity of the Lâ€type Ca ²⁺ channel Ca _v 1.2. EMBO Journal, 2020, 39, e102622.	3.5	20
8	TRPML1ng on sparks. Science Signaling, 2020, 13, .	1.6	1
9	GRK5 Controls SAP97-Dependent Cardiotoxic β ₁ Adrenergic Receptor-CaMKII Signaling in Heart Failure. Circulation Research, 2020, 127, 796-810.	2.0	16
10	Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Frontiers in Endocrinology, 2020, 11, 329.	1.5	14
11	Adenylyl cyclase 5–generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. Journal of Clinical Investigation, 2019, 129, 3140-3152.	3.9	35
12	A Gs-coupled purinergic receptor boosts Ca2+ influx and vascular contractility during diabetic hyperglycemia. ELife, 2019, 8, .	2.8	33
13	\hat{I}^2 -blockers augment L-type Ca2+ channel activity by targeting spatially restricted \hat{I}^2 AR signaling in neurons. ELife, 2019, 8, .	2.8	12
14	Functionally distinct and selectively phosphorylated GPCR subpopulations co-exist in a single cell. Nature Communications, 2018, 9, 1050.	5.8	28
15	Regulation of voltageâ€gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation, 2018, 25, e12423.	1.0	50
16	Dynamic L-type CaV1.2 channel trafficking facilitates CaV1.2 clustering and cooperative gating. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1341-1355.	1.9	29
17	Anchored G _s â€coupled purinergic receptor regulation of Lâ€type Ca _V 1.2 and vascular tone in diabetic hyperglycemia. FASEB Journal, 2018, 32, 569.10.	0.2	0
18	Dynamic Lâ€ŧype Ca V 1.2 channel trafficking facilitates Ca V 1.2 clustering and cooperative gating. FASEB Journal, 2018, 32, 751.1.	0.2	0

#	Article	IF	CITATIONS
19	Ser ¹⁹²⁸ phosphorylation by PKA stimulates the L-type Ca ²⁺ channel Ca _V 1.2 and vasoconstriction during acute hyperglycemia and diabetes. Science Signaling, 2017, 10, .	1.6	85
20	Predominant contribution of L-type Cav1.2 channel stimulation to impaired intracellular calcium and cerebral artery vasoconstriction in diabetic hyperglycemia. Channels, 2017, 11, 340-346.	1.5	16
21	Phosphorylation of Ser ¹⁹²⁸ mediates the enhanced activity of the L-type Ca ²⁺ channel Ca _v 1.2 by the β ₂ -adrenergic receptor in neurons. Science Signaling, 2017, 10, .	1.6	91
22	Impaired BKCa channel function in native vascular smooth muscle from humans with type 2 diabetes. Scientific Reports, 2017, 7, 14058.	1.6	31
23	AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K+ currents in ventricular myocytes following myocardial infarction. Cellular Signalling, 2016, 28, 733-740.	1.7	23
24	Selective Down-regulation of KV2.1 Function Contributes to Enhanced Arterial Tone during Diabetes. Journal of Biological Chemistry, 2015, 290, 7918-7929.	1.6	30
25	Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels. Circulation Research, 2015, 117, 1013-1023.	2.0	28
26	AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Remodeling in Hyperglycemia and Diabetes Mellitus. Circulation Research, 2014, 114, 607-615.	2.0	86
27	Capturing single L-type Ca2+ channel function with optics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1657-1664.	1.9	11
28	AKAP150 is required for NFATc3â€induced vascular BKCa channel suppression during diabetic hypertension. FASEB Journal, 2012, 26, 872.26.	0.2	0
29	Mitochondrial Targeted Antioxidant Peptide Ameliorates Hypertensive Cardiomyopathy. Journal of the American College of Cardiology, 2011, 58, 73-82.	1.2	314
30	Mitochondrial Oxidative Stress Mediates Angiotensin Il–Induced Cardiac Hypertrophy and Cαq Overexpression–Induced Heart Failure. Circulation Research, 2011, 108, 837-846.	2.0	450
31	Restoration of Normal L-Type Ca ²⁺ Channel Function During Timothy Syndrome by Ablation of an Anchoring Protein. Circulation Research, 2011, 109, 255-261.	2.0	93
32	Elevated Ca ²⁺ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 298, C211-C220.	2.1	80
33	TGF-β1 Limits Plaque Growth, Stabilizes Plaque Structure, and Prevents Aortic Dilation in Apolipoprotein E-Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1251-1257.	1.1	86
34	NFATc3-dependent loss of Ito gradient across the left ventricular wall during chronic β adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 2009, 46, 249-256.	0.9	33
35	Functional contribution of α3L8′ to the neuronal nicotinic α3 receptor. Journal of Neuroscience Research, 2008, 86, 2884-2894.	1.3	0
36	CALCIUM SPARKLETS IN ARTERIAL SMOOTH MUSCLE. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 1121-1126.	0.9	32

#	Article	IF	CITATIONS
37	The control of Ca ²⁺ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15623-15628.	3.3	94
38	AKAP150 Is Required for Stuttering Persistent Ca ²⁺ Sparklets and Angiotensin II–Induced Hypertension. Circulation Research, 2008, 102, e1-e11.	2.0	120
39	Activation of NFATc3 Down-regulates the β1 Subunit of Large Conductance, Calcium-activated K+ Channels in Arterial Smooth Muscle and Contributes to Hypertension. Journal of Biological Chemistry, 2007, 282, 3231-3240.	1.6	113
40	Calcium sparklets regulate local and global calcium in murine arterial smooth muscle. Journal of Physiology, 2007, 579, 187-201.	1.3	85
41	Contribution of valine 7′ of TMD2 to gating of neuronal α3 receptor subtypes. Journal of Neuroscience Research, 2006, 84, 1778-1788.	1.3	3