## Carlos M Guerrero-Bosagna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8107749/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | GBS-MeDIP: A protocol for parallel identification of genetic and epigenetic variation in the same reduced fraction of genomes across individuals. STAR Protocols, 2022, 3, 101202.                             | 1.2  | 4         |
| 2  | Practical application of a Bayesian network approach to poultry epigenetics and stress. BMC Bioinformatics, 2022, 23, .                                                                                        | 2.6  | 2         |
| 3  | Sperm Methylome Profiling Can Discern Fertility Levels in the Porcine Biomedical Model. International<br>Journal of Molecular Sciences, 2021, 22, 2679.                                                        | 4.1  | 15        |
| 4  | Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. Insects, 2021, 12, 780.                                                                                                  | 2.2  | 11        |
| 5  | From epigenotype to new genotypes: Relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Seminars in Cell and Developmental Biology, 2020, 97, 86-92.                           | 5.0  | 14        |
| 6  | Putative Epigenetic Biomarkers of Stress in Red Blood Cells of Chickens Reared Across Different<br>Biomes. Frontiers in Genetics, 2020, 11, 508809.                                                            | 2.3  | 16        |
| 7  | The methylation landscape and its role in domestication and gene regulation in the chicken. Nature Ecology and Evolution, 2020, 4, 1713-1724.                                                                  | 7.8  | 22        |
| 8  | DNA methylation variation in the brain of laying hens in relation to differential behavioral patterns.<br>Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 35, 100700.           | 1.0  | 20        |
| 9  | DNA methylation in canine brains is related to domestication and dog-breed formation. PLoS ONE, 2020, 15, e0240787.                                                                                            | 2.5  | 9         |
| 10 | Heavy metals in fish and its association with autoimmunity in the development of juvenile idiopathic arthritis: a prospective birth cohort study. Pediatric Rheumatology, 2019, 17, 33.                        | 2.1  | 17        |
| 11 | Mutation dynamics of CpG dinucleotides during a recent event of vertebrate diversification.<br>Epigenetics, 2019, 14, 685-707.                                                                                 | 2.7  | 30        |
| 12 | Epigenetics and early domestication: differences in hypothalamic DNA methylation between red<br>junglefowl divergently selected for high or low fear of humans. Genetics Selection Evolution, 2018,<br>50, 13. | 3.0  | 42        |
| 13 | Biological Dogmas in Relation to the Origin of Evolutionary Novelties. , 2018, , 317-330.                                                                                                                      |      | 1         |
| 14 | Transgenerational and Epigenetic Impacts of Environmental Exposures in Male Reproduction. , 2018, ,<br>634-641.                                                                                                |      | 0         |
| 15 | Stress in the Educational System as a Potential Source of Epigenetic Influences on Children's Development and Behavior. Frontiers in Behavioral Neuroscience, 2018, 12, 143.                                   | 2.0  | 4         |
| 16 | Transgenerational epigenetic inheritance in birds. Environmental Epigenetics, 2018, 4, dvy008.                                                                                                                 | 1.8  | 47        |
| 17 | Evolution with No Reason: A Neutral View on Epigenetic Changes, Genomic Variability, and<br>Evolutionary Novelty. BioScience, 2017, 67, 469-476.                                                               | 4.9  | 13        |
| 18 | Marked for Life: Epigenetic Effects of Endocrine Disrupting Chemicals. Annual Review of Environment and Resources. 2017, 42, 105-160.                                                                          | 13.4 | 52        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | DNA methylation profiles in red blood cells of adult hens correlate to their rearing conditions.<br>Journal of Experimental Biology, 2017, 220, 3579-3587.                                 | 1.7 | 46        |
| 20 | An Epigenetic Perspective on the Midwife Toad Experiments of Paul Kammerer (1880–1926). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 179-192. | 1.3 | 19        |
| 21 | Epigenetics, evolution and the survival of the non-unfit. Biochemist, 2017, 39, 8-11.                                                                                                      | 0.5 | 2         |
| 22 | Transgenerational Epigenetic Inheritance. , 2016, , 425-437.                                                                                                                               |     | 2         |
| 23 | Developmental and Epigenetic Origins of Male Reproductive Pathologies. , 2016, , 171-189.                                                                                                  |     | 0         |
| 24 | Uppsala Consensus Statement on Environmental Contaminants and the Global Obesity Epidemic.<br>Environmental Health Perspectives, 2016, 124, A81-3.                                         | 6.0 | 39        |
| 25 | Differential Expression of Genes and DNA Methylation associated with Prenatal Protein<br>Undernutrition by Albumen Removal in an avian model. Scientific Reports, 2016, 6, 20837.          | 3.3 | 16        |
| 26 | High type II error and interpretation inconsistencies when attempting to refute transgenerational epigenetic inheritance. Genome Biology, 2016, 17, 153.                                   | 8.8 | 50        |
| 27 | High-throughput and Cost-effective Chicken Genotyping Using Next-Generation Sequencing. Scientific<br>Reports, 2016, 6, 26929.                                                             | 3.3 | 55        |
| 28 | Bisphenol-A and metabolic diseases: epigenetic, developmental and transgenerational basis.<br>Environmental Epigenetics, 2016, 2, dvw022.                                                  | 1.8 | 48        |
| 29 | Optimized method for methylated DNA immuno-precipitation. MethodsX, 2015, 2, 432-439.                                                                                                      | 1.6 | 20        |
| 30 | Globalization, climate change, and transgenerational epigenetic inheritance: will our descendants be<br>at risk?. Clinical Epigenetics, 2015, 7, 8.                                        | 4.1 | 20        |
| 31 | Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics, 2015, 10, 762-771.                                          | 2.7 | 118       |
| 32 | Identification of Genomic Features in Environmentally Induced Epigenetic Transgenerational Inherited<br>Sperm Epimutations. PLoS ONE, 2014, 9, e100194.                                    | 2.5 | 50        |
| 33 | Pesticide Methoxychlor Promotes the Epigenetic Transgenerational Inheritance of Adult-Onset<br>Disease through the Female Germline. PLoS ONE, 2014, 9, e102091.                            | 2.5 | 198       |
| 34 | Environmental Epigenetics and Effects on Male Fertility. Advances in Experimental Medicine and Biology, 2014, 791, 67-81.                                                                  | 1.6 | 23        |
| 35 | Environmental epigenetics and phytoestrogen/phytochemical exposures. Journal of Steroid<br>Biochemistry and Molecular Biology, 2014, 139, 270-276.                                         | 2.5 | 52        |
| 36 | Role of CpG deserts in the epigenetic transgenerational inheritance of differential DNA methylation regions. BMC Genomics, 2014, 15, 692.                                                  | 2.8 | 78        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Environmentally induced epigenetic transgenerational inheritance of male infertility. Current<br>Opinion in Genetics and Development, 2014, 26, 79-88.                                           | 3.3 | 67        |
| 38 | Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reproductive Toxicology, 2013, 36, 104-116.                | 2.9 | 195       |
| 39 | Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell<br>Transcriptome and Epigenome: Molecular Etiology of Male Infertility. PLoS ONE, 2013, 8, e59922.      | 2.5 | 119       |
| 40 | Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Medicine, 2013, 11, 228.                                              | 5.5 | 334       |
| 41 | Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational<br>Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. PLoS ONE, 2013, 8, e55387. | 2.5 | 711       |
| 42 | Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ Line. PLoS ONE, 2013, 8, e66318.                                             | 2.5 | 156       |
| 43 | Dioxin (TCDD) Induces Epigenetic Transgenerational Inheritance of Adult Onset Disease and Sperm<br>Epimutations. PLoS ONE, 2012, 7, e46249.                                                      | 2.5 | 225       |
| 44 | Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures. PLoS ONE, 2012, 7, e31901.                      | 2.5 | 380       |
| 45 | Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reproductive Toxicology, 2012, 34, 708-719.     | 2.9 | 177       |
| 46 | Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reproductive Toxicology, 2012, 34, 694-707.                 | 2.9 | 228       |
| 47 | Finalism in Darwinian and Lamarckian Evolution: Lessons from Epigenetics and Developmental Biology.<br>Evolutionary Biology, 2012, 39, 283-300.                                                  | 1.1 | 12        |
| 48 | Environmentally induced epigenetic transgenerational inheritance of phenotype and disease.<br>Molecular and Cellular Endocrinology, 2012, 354, 3-8.                                              | 3.2 | 194       |
| 49 | Environmentally Induced Epigenetic Transgenerational Inheritance of Ovarian Disease. PLoS ONE, 2012,<br>7, e36129.                                                                               | 2.5 | 205       |
| 50 | Epigenetic transgenerational actions of endocrine disruptors. Reproductive Toxicology, 2011, 31, 337-343.                                                                                        | 2.9 | 232       |
| 51 | Epigenetic transgenerational actions of environmental factors in disease etiology. Trends in Endocrinology and Metabolism, 2010, 21, 214-222.                                                    | 7.1 | 608       |
| 52 | Epigenetic Transgenerational Actions of Vinclozolin on Promoter Regions of the Sperm Epigenome.<br>PLoS ONE, 2010, 5, e13100.                                                                    | 2.5 | 362       |
| 53 | Environmental signals and transgenerational epigenetics. Epigenomics, 2009, 1, 111-117.                                                                                                          | 2.1 | 95        |
| 54 | Epigenetic Transgenerational Effects of Endocrine Disruptors on Male Reproduction. Seminars in Reproductive Medicine, 2009, 27, 403-408.                                                         | 1.1 | 60        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC Physiology, 2008, 8, 17.                                           | 3.6 | 96        |
| 56 | Methylation status in healthy subjects with normal and high serum folate concentration. Nutrition, 2008, 24, 1103-1109.                                                                                                        | 2.4 | 29        |
| 57 | Endocrine Disruptors, Epigenetically Induced Changes, and Transgenerational Transmission of Characters and Epigenetic States. , 2007, , 175-189.                                                                               |     | 10        |
| 58 | Environmental signaling and evolutionary change: can exposure of pregnant mammals to<br>environmental estrogens lead to epigenetically induced evolutionary changes in embryos?. Evolution<br>& Development, 2005, 7, 341-350. | 2.0 | 64        |
| 59 | Effect of homocysteine, folates, and cobalamin on endothelial cell- and copper-induced LDL oxidation.<br>Lipids, 2005, 40, 259-264.                                                                                            | 1.7 | 13        |
| 60 | Undergraduate teaching of evolution in chile: more than natural selection. Revista Chilena De<br>Historia Natural, 2005, 78, .                                                                                                 | 1.2 | 0         |
| 61 | El ¿delito? de Aristóteles. Revista Chilena De Historia Natural, 2001, 74, 507.                                                                                                                                                | 1.2 | 3         |