
Juliette Blanchard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8107673/publications.pdf Version: 2024-02-01

ILLIETTE BLANCHARD

#	Article	IF	CITATIONS
1	Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts. Catalysis Today, 2008, 130, 3-13.	2.2	139
2	Kinetics of Cosurfactantâ´'Surfactantâ´'Silicate Phase Behavior. 1. Short-Chain Alcohols. Journal of Physical Chemistry B, 1999, 103, 5943-5948.	1.2	128
3	The controlled synthesis of metal-acid bifunctional catalysts: The effect of metal:acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization. Journal of Catalysis, 2016, 342, 203-212.	3.1	109
4	Structural characterization of titanium-oxo-polymers synthesized in the presence of protons or complexing ligands as inhibitors. Journal of Non-Crystalline Solids, 2000, 265, 83-97.	1.5	93
5	Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane. Gold Bulletin, 2013, 46, 335-341.	1.1	93
6	High-Current-Density CO2-to-CO Electroreduction on Ag-Alloyed Zn Dendrites at Elevated Pressure. Joule, 2020, 4, 395-406.	11.7	88
7	Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and Al2O3-supported Pt catalysts for cinnamaldehyde hydrogenation. Journal of Catalysis, 2011, 282, 228-236.	3.1	78
8	Phase Behavior and Wall Formation in Zr(SO4)2/CTABr and TiOSO4/CTABr Mesophases. Chemistry of Materials, 1999, 11, 3002-3008.	3.2	76
9	Post-synthesis alumination of SBA-15 in aqueous solution: A versatile tool for the preparation of acidic Al-SBA-15 supports. Microporous and Mesoporous Materials, 2005, 85, 297-304.	2.2	75
10	Hydrodesulfurization of dibenzothiophene on MoS2/MCM-41 and MoS2/SBA-15 catalysts prepared by thermal spreading of MoO3. Catalysis Today, 2005, 107-108, 537-544.	2.2	68
11	Characterization of mesoporous alumina prepared by surface alumination of SBA-15. Microporous and Mesoporous Materials, 2008, 110, 232-241.	2.2	65
12	Synthesis of hexagonally packed porous titanium oxo-phosphate. Microporous and Mesoporous Materials, 2000, 39, 163-170.	2.2	56
13	Influence of Cosurfactants on the Properties of Mesostructured Materials. Langmuir, 2002, 18, 4963-4971.	1.6	55
14	Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. Biosensors, 2020, 10, 146.	2.3	55
15	Zn–Cu Alloy Nanofoams as Efficient Catalysts for the Reduction of CO ₂ to Syngas Mixtures with a Potentialâ€independent H ₂ /CO Ratio. ChemSusChem, 2019, 12, 511-517.	3.6	49
16	Heteroaggregation and Selective Deposition for the Fine Design of Nanoarchitectured Bifunctional Catalysts: Application to Hydroisomerization. ACS Catalysis, 2018, 8, 6071-6078.	5.5	41
17	The controlled synthesis of metal-acid bifunctional catalysts: Selective Pt deposition and nanoparticle synthesis on amorphous aluminosilicates. Journal of Catalysis, 2016, 342, 213-225.	3.1	39
18	Kinetics of Cosurfactantâ^'Surfactantâ^'Silicate Phase Behavior. 2. Short-Chain Aminesâ€. Langmuir, 2000, 16, 8809-8813.	1.6	37

JULIETTE BLANCHARD

#	Article	IF	CITATIONS
19	Mesoporous materials from zeolite seeds as supports for nickel–tungsten sulfide active phasesPart 2. Catalytic properties for deep hydrodesulfurization reactions. Applied Catalysis A: General, 2006, 298, 88-93.	2.2	37
20	Hydrolysis and Condensation Reactions of Transition Metal Alkoxides: Calorimetric Study and Evaluation of the Extent of Reaction. European Journal of Inorganic Chemistry, 1998, 1998, 1115-1127.	1.0	35
21	Polyoxomolybdate‧tabilized Ru ⁰ Nanoparticles Deposited on Mesoporous Silica as Catalysts for Aromatic Hydrogenation. ChemPhysChem, 2007, 8, 2636-2642.	1.0	35
22	Preparation of Ru metal nanoparticles in mesoporous materials: influence of sulfur on the hydrogenating activity. Microporous and Mesoporous Materials, 2003, 60, 197-206.	2.2	31
23	Catalysts for aromatics hydrogenation in presence of sulfur: reactivities of nanoparticles of ruthenium metal and sulfide dispersed in acidic Y zeolites. Applied Catalysis A: General, 2003, 245, 245-256.	2.2	31
24	Formation of heteropolymolybdates during the preparation of Mo and NiMo HDS catalysts supported on SBA-15: Influence on the dispersion of the active phase and on the HDS activity. Microporous and Mesoporous Materials, 2010, 130, 130-141.	2.2	31
25	Insight into the structure and localization of the titania overlayer in TiO2-coated SBA-15 materials. New Journal of Chemistry, 2010, 34, 508.	1.4	31
26	Mesoporous materials from zeolite seeds as supports for nickel tungsten sulfide active phases. Applied Catalysis A: General, 2005, 294, 59-67.	2.2	30
27	Control of calcium accessibility over hydroxyapatite by post-precipitation steps: influence on the catalytic reactivity toward alcohols. Physical Chemistry Chemical Physics, 2016, 18, 27837-27847.	1.3	30
28	Characterisation of sol–gel derived titanium oxopolymers: first evidence of Ti–OH groups through1H–17O CP NMR experiments. Journal of Materials Chemistry, 1998, 8, 985-989.	6.7	28
29	From mesoporous alumina to Pt/Al2O3 catalyst: A comparative study of the aluminas synthesis in aqueous medium, physicochemical properties and stability. Microporous and Mesoporous Materials, 2008, 116, 14-21.	2.2	24
30	NO _{<i>x</i>} -TPD as a Tool to Estimate the Accessible Zirconia Surface of ZrO ₂ -Containing Materials. Journal of Physical Chemistry C, 2010, 114, 9731-9738.	1.5	24
31	Role of the Al source in the synthesis of aluminum magadiite. Applied Clay Science, 2012, 57, 71-78.	2.6	24
32	LRS-1:  A New Delaminated Phyllosilicate Material with High Acidity. Chemistry of Materials, 2006, 18, 34-40.	3.2	23
33	Comparing Al-SBA-15 Support and Pt/Al-SBA-15 Catalyst: Changes in Al Speciation and Acidic Properties Induced by the Introduction of Pt via Aqueous Medium. Topics in Catalysis, 2009, 52, 334-343.	1.3	19
34	Relevant parameters for obtaining high-surface area materials by delamination of magadiite, a layered sodium silicate. Journal of Materials Chemistry, 2011, 21, 18403.	6.7	17
35	Insights into the accessibility of Zr in Zr/SBA-15 mesoporous silica supports with increasing Zr loadings. Microporous and Mesoporous Materials, 2016, 225, 440-449.	2.2	17
36	Ruthenium sulfide clusters in acidic zeolites: In situ XAS characterization during sulfidation and reaction. Applied Catalysis A: General, 2007, 322, 98-105.	2.2	16

JULIETTE BLANCHARD

#	Article	IF	CITATIONS
37	Search for confinement effects in mesoporous supports: hydrogenation of o-xylene on Pt°/MCM-41. Catalysis Letters, 2006, 110, 115-124.	1.4	13
38	Confinement in Nanopores at the Oxide/Water Interface: Modification of Alumina Adsorption Properties. Chemistry - A European Journal, 2008, 14, 6142-6148.	1.7	12
39	Basic Cs-Pt/MCM-41 Catalysts: Synthesis, Characterization and Activity in n-Hexane Conversion. Catalysis Letters, 2002, 83, 221-229.	1.4	11
40	Gold Nanorod Coating with Silica Shells Having Controlled Thickness and Oriented Porosity: Tailoring the Shells for Biosensing. ACS Applied Nano Materials, 2021, 4, 9842-9854.	2.4	11
41	Investigation of the thiotolerance of metallic ruthenium nanoparticles: A XAS study. Catalysis Today, 2009, 147, 255-259.	2.2	8
42	Effect of preparation protocol on the surface acidity of molybdenum catalysts supported on titania and zirconia. Journal of Molecular Catalysis A, 2016, 425, 157-165.	4.8	8
43	Transformation of n-hexane on PtAl/MCM-41 and PtAl/SBA-15. Reaction Kinetics and Catalysis Letters, 2004, 82, 139-147.	0.6	7
44	On the Detrimental Effect of Tungstates on the n-C10-SCR of NO x on Ag/γ-Al2O3. Topics in Catalysis, 2013, 56, 134-139.	1.3	7
45	On the influence of water traces on the acidity measurement of amorphous aluminosilicates. Catalysis Today, 2014, 226, 89-96.	2.2	7
46	A new method for elaborating mesoporous SiO2/montmorillonite composite materials. Journal of Sol-Gel Science and Technology, 2015, 75, 436-446.	1.1	6
47	Comparative study of physico-chemical, acid–base and catalytic properties of vanadium based catalysts in the oxidehydrogenation of n-butane: effect of the oxide carrier. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 831-845.	0.8	5
48	Platinum-zeolite hybrid catalyst for the electrooxidation of formic acid. Journal of Electroanalytical Chemistry, 2021, 896, 115491.	1.9	5
49	The genesis of a heterogeneous catalyst: in situ observation of a transition metal complex adsorbing onto an oxide surface in solution. Chemical Communications, 2014, 50, 2409-2411.	2.2	4
50	Effect of the preparation method and of the vanadium content on the physicochemical and surface properties of vanadium–magnesium-based catalysts for the selective oxidation of n-butane. Comptes Rendus Chimie, 2017, 20, 1062-1071.	0.2	4
51	Synthesis of supported ZSM-5 nanoparticles. Microporous and Mesoporous Materials, 2019, 287, 177-182.	2.2	4
52	Mesoporous alumina of controlled pore size obtained by surface alumination of pure silica SBA-15. Studies in Surface Science and Catalysis, 2006, 162, 13-20.	1.5	3
53	Preparation of Pt°/MCM-41: effect of drying on MCM-41 structure and Pt° dispersion. Studies in Surface Science and Catalysis, 2006, , 449-456.	1.5	3
54	Characterization and reactivity of VMgO catalysts prepared by wet impregnation and sol–gel methods. Chemical Engineering Communications, 2018, 205, 1288-1298.	1.5	3

JULIETTE BLANCHARD

#	Article	IF	CITATIONS
55	Organo-NO formation–decomposition as the origin of the changes in the low temperature NO-TPD profile in the presence of n-decane on Ag/γ-Al2O3. Catalysis Communications, 2014, 46, 81-85.	1.6	2
56	In-situ monitoring of transition metal complex adsorption on oxide surfaces during the first stages of supported metal catalyst preparation. Catalysis Today, 2014, 235, 245-249.	2.2	2
57	Preparation of niobium-based oxygen carriers by polyol-mediated process and application to chemical-looping reforming. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	2
58	Biomorphic tubular nickel oxide structures: Effect of the synthesis parameters on their structural and functional properties, surface-related applications. Journal of Alloys and Compounds, 2020, 816, 152543.	2.8	2
59	Delamination of lamellar phyllosilicate Magadiite. Science Bulletin, 2010, 55, 2584-2588.	1.7	1
60	Characterization and Catalytic Activity of Mn(salen) Supported on a Silica/Clay-Mineral Composite: Influence of the Complex/Support Interaction on the Catalytic Efficiency. Chemistry Africa, 2019, 2, 77-87.	1.2	1
61	Pulsed field gradient NMR studies of n-hexane diffusion in MCM-41 materials. Studies in Surface Science and Catalysis, 2007, 165, 203-206.	1.5	0
62	Influence of Dealumination by Acetylacetone on Acidity and Activity of Amorphous Silicaâ€Aluminas. ChemistrySelect, 2020, 5, 2489-2495.	0.7	0
63	Successive Strong Electrostatic Adsorptions of [RhCl6]3– on Tungstated-Ceria as an Original Approach to Preserve Rh Clusters From Sintering Under High-Temperature Reduction. Journal of Physical Chemistry C, 0, , .	1.5	0