Dagmar Timmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8107672/publications.pdf Version: 2024-02-01

		147801	168389
86	3,514	31	53
papers	citations	h-index	g-index
91	91	91	4433
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sensory axonal neuropathy in <i>RFC1</i> -disease: tip of the iceberg of broad subclinical multisystemic neurodegeneration. Brain, 2022, 145, e6-e9.	7.6	6
2	Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Communications, 2022, 4, fcab306.	3.3	15
3	Investigation of biases in convolutional neural networks for semantic segmentation using performance sensitivity analysis. Zeitschrift Fur Medizinische Physik, 2022, 32, 346-360.	1.5	2
4	Realâ€Life Turning Movements Capture Subtle Longitudinal and Preataxic Changes in Cerebellar Ataxia. Movement Disorders, 2022, 37, 1047-1058.	3.9	24
5	A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES) Tj ETQq1 1 0.7843	14 rgBT /0 12.0	Overlock 10
6	The CCAS-scale in hereditary ataxias: helpful on the group level, particularly in SCA3, but limited in individual patients. Journal of Neurology, 2022, 269, 4363-4374.	3.6	13
7	Temporal dynamics of fMRI signal changes during conditioned interoceptive pain-related fear and safety acquisition and extinction. Behavioural Brain Research, 2022, 427, 113868.	2.2	7
8	The cerebellum contributes to context-effects during fear extinction learning: A 7T fMRI study. NeuroImage, 2022, 253, 119080.	4.2	21
9	Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS): from clinical diagnosis towards genetic testing. Medizinische Genetik, 2022, 33, 301-310.	0.2	1
10	Motor trainingâ€related brain reorganization in patients with cerebellar degeneration. Human Brain Mapping, 2022, 43, 1611-1629.	3.6	4
11	Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in <i>POLR3A</i> , <i>POLR3B</i> , and <i>POLR1C</i> . Journal of Clinical Endocrinology and Metabolism, 2021, 106, e660-e674.	3.6	26
12	Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1 Disease. Neurology, 2021, 96, e1369-e1382.	1.1	93
13	Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adultâ€onset disorder. Annals of Clinical and Translational Neurology, 2021, 8, 774-789.	3.7	13
14	Update cerebellum and cognition. Journal of Neurology, 2021, 268, 3921-3925.	3.6	27
15	Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia. Brain, 2021, 144, 1467-1481.	7.6	18
16	Neurostructural changes and declining sensorimotor function due to cerebellar cortical degeneration. Journal of Neurophysiology, 2021, 125, 1735-1745.	1.8	5
17	The ARCA Registry: A Collaborative Global Platform for Advancing Trial Readiness in Autosomal Recessive Cerebellar Ataxias. Frontiers in Neurology, 2021, 12, 677551.	2.4	15
18	Natural History of Polymerase Gamma–Related Ataxia. Movement Disorders, 2021, 36, 2642-2652.	3.9	10

#	Article	IF	CITATIONS
19	Brain Structure and Degeneration Staging in Friedreich Ataxia: <scp>Magnetic Resonance Imaging</scp> Volumetrics from the <scp>ENIGMAâ€Ataxia</scp> Working Group. Annals of Neurology, 2021, 90, 570-583.	5.3	27
20	Resection of cerebellar tumours causes widespread and functionally relevant white matter impairments. Human Brain Mapping, 2021, 42, 1641-1656.	3.6	7
21	Reference values for the Cerebellar Cognitive Affective Syndrome Scale: age and education matter. Brain, 2021, 144, e20-e20.	7.6	14
22	Fampridine and Acetazolamide in EA2 and Related Familial EA. Neurology: Clinical Practice, 2021, 11, e438-e446.	1.6	27
23	Ataxien – Eine aktuelle Übersicht über die weiter wachsende Anzahl möglicher Diagnosen. Neurologie Up2date, 2021, 04, 391-410.	0.0	0
24	Cerebellum is more concerned about visceral than somatic pain. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 218-219.	1.9	12
25	Conversion of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 to manifest ataxia (RISCA): a longitudinal cohort study. Lancet Neurology, The, 2020, 19, 738-747.	10.2	41
26	Validation of a German version of the Cerebellar Cognitive Affective/ Schmahmann Syndrome Scale: preliminary version and study protocol. Neurological Research and Practice, 2020, 2, 39.	2.0	13
27	Real-life gait assessment in degenerative cerebellar ataxia. Neurology, 2020, 95, e1199-e1210.	1.1	60
28	Extinction of cognitive associations is preserved in patients with cerebellar disease. Neurobiology of Learning and Memory, 2020, 169, 107185.	1.9	1
29	Interaction of Fear Conditioning with Eyeblink Conditioning Supports the Sensory Gating Hypothesis of the Amygdala in Men. ENeuro, 2020, 7, ENEURO.0128-20.2020.	1.9	6
30	Long-term effects of cerebellar anodal transcranial direct current stimulation (tDCS) on the acquisition and extinction of conditioned eyeblink responses. Scientific Reports, 2020, 10, 22434.	3.3	4
31	Structural characteristics of the central nervous system in FriedreichÂataxia: an in vivo spinal cord and brain MRI study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 615-617.	1.9	33
32	Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor. Cerebellum, 2019, 18, 67-75.	2.5	3
33	Prediction of Survival With Longâ€Term Disease Progression in Most Common Spinocerebellar Ataxia. Movement Disorders, 2019, 34, 1220-1227.	3.9	14
34	Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum, 2019, 18, 1064-1097.	2.5	120
35	Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: A systematic evaluation. Brain Stimulation, 2019, 12, 1177-1186.	1.6	49
36	Speech treatment improves dysarthria in multisystemic ataxia: a rater-blinded, controlled pilot-study in ARSACS. Journal of Neurology, 2019, 266, 1260-1266.	3.6	27

#	Article	IF	CITATIONS
37	Cerebellar transcranial direct current stimulation modulates the fMRI signal in the cerebellar nuclei in a simple motor task. Brain Stimulation, 2019, 12, 1169-1176.	1.6	19
38	How to help cerebellar patients make the most of their remaining learning capacities. Brain, 2019, 142, 492-495.	7.6	7
39	Extinction and Renewal of Conditioned Eyeblink Responses in Focal Cerebellar Disease. Cerebellum, 2019, 18, 166-177.	2.5	7
40	Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Zeitschrift Fur Medizinische Physik, 2019, 29, 128-138.	1.5	17
41	Clinical spectrum of POLR3-related leukodystrophy caused by biallelic <i>POLR1C</i> pathogenic variants. Neurology: Genetics, 2019, 5, e369.	1.9	38
42	Reply: POLR3A variants in hereditary spastic paraplegia and ataxia. Brain, 2018, 141, e2-e2.	7.6	10
43	The role of the human cerebellum in linguistic prediction, word generation and verbal working memory: evidence from brain imaging, non-invasive cerebellar stimulation and lesion studies. Neuropsychologia, 2018, 115, 204-210.	1.6	38
44	Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurology, The, 2018, 17, 327-334.	10.2	69
45	Long-term evolution of patient-reported outcome measures in spinocerebellar ataxias. Journal of Neurology, 2018, 265, 2040-2051.	3.6	34
46	Coordination and timing deficits in speech and swallowing in autosomal recessive spastic ataxia of Charlevoix–Saguenay (ARSACS). Journal of Neurology, 2018, 265, 2060-2070.	3.6	21
47	Activity and connectivity of the cerebellum in trigeminal nociception. NeuroImage, 2017, 150, 112-118.	4.2	66
48	Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation. Journal of Neurophysiology, 2017, 118, 732-748.	1.8	43
49	Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 2017, 140, 1561-1578.	7.6	85
50	Loss-of-function mutations in the <i>ATP13A2/</i> PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain, 2017, 140, 287-305.	7.6	135
51	Alcohol improves cerebellar learning deficit in myoclonus–dystonia: A clinical and electrophysiological investigation. Annals of Neurology, 2017, 82, 543-553.	5.3	39
52	Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology, 2017, 89, 1043-1049.	1.1	45
53	Cerebellar-dependent associative learning is impaired in very preterm born children and young adults. Scientific Reports, 2017, 7, 18028.	3.3	20
54	Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols. Frontiers in Human Neuroscience, 2017, 11, 23.	2.0	17

#	Article	IF	CITATIONS
55	Effects of transcranial direct current stimulation on grip force control in patients with cerebellar degeneration. Cerebellum and Ataxias, 2017, 4, 15.	1.9	18
56	Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Movement Disorders, 2016, 31, 1891-1900.	3.9	54
57	Multisystemic <i>SYNE1</i> ataxia: confirming the high frequency and extending the mutational and phenotypic spectrum. Brain, 2016, 139, e46-e46.	7.6	40
58	Diffuse hypomyelination is not obligate for POLR3-related disorders. Neurology, 2016, 86, 1622-1626.	1.1	65
59	SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study. Brain, 2016, 139, 1378-1393.	7.6	87
60	Progression characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurology, The, 2016, 15, 1346-1354.	10.2	117
61	Structural and Functional Magnetic Resonance Imaging of the Cerebellum: Considerations for Assessing Cerebellar Ataxias. Cerebellum, 2016, 15, 21-25.	2.5	29
62	Contribution of the Cerebellum in Cue-Dependent Force Changes During an Isometric Precision Grip Task. Cerebellum, 2016, 15, 439-450.	2.5	3
63	Prehension Kinematics, Grasping Forces, and Independent Finger Control in Mildly Affected Patients with Essential Tremor. Cerebellum, 2016, 15, 498-508.	2.5	4
64	Cerebellar tDCS Does Not Improve Learning in a Complex Whole Body Dynamic Balance Task in Young Healthy Subjects. PLoS ONE, 2016, 11, e0163598.	2.5	55
65	Cerebellar-Dependent Associative Learning Is Preserved in Duchenne Muscular Dystrophy: A Study Using Delay Eyeblink Conditioning. PLoS ONE, 2015, 10, e0126528.	2.5	7
66	Dual task effect on postural control in patients with degenerative cerebellar disorders. Cerebellum and Ataxias, 2015, 2, 6.	1.9	20
67	Motor learning of cue-dependent pull-force changes during an isometric precision grip task. Human Movement Science, 2015, 39, 138-153.	1.4	2
68	Ageing shows a pattern of cerebellar degeneration analogous, but not equal, to that in patients suffering from cerebellar degenerative disease. NeuroImage, 2015, 116, 196-206.	4.2	32
69	Sex differences in cerebellar mechanisms involved in pain-related safety learning. Neurobiology of Learning and Memory, 2015, 123, 92-99.	1.9	17
70	Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia. Brain, 2015, 138, 1182-1197.	7.6	106
71	Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nature Communications, 2015, 6, 7623.	12.8	127
72	Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurology, The, 2015, 14, 1101-1108.	10.2	213

#	Article	lF	CITATIONS
73	Motor protein mutations cause a new form of hereditary spastic paraplegia. Neurology, 2014, 82, 2007-2016.	1.1	56
74	Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. Journal of Medical Genetics, 2014, 51, 479-486.	3.2	85
75	Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain, 2014, 137, 2444-2455.	7.6	144
76	Subclinical cerebellar dysfunction in patients with migraine: Evidence from eyeblink conditioning. Cephalalgia, 2014, 34, 904-913.	3.9	17
77	Acquisition of Conditioned Eyeblink Responses is Modulated by Cerebellar tDCS. Brain Stimulation, 2014, 7, 525-531.	1.6	68
78	Brain Changes Associated with Postural Training in Patients with Cerebellar Degeneration: A Voxel-Based Morphometry Study. Journal of Neuroscience, 2013, 33, 4594-4604.	3.6	87
79	Gait ataxia—specific cerebellar influences and their rehabilitation. Movement Disorders, 2013, 28, 1566-1575.	3.9	83
80	Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. Journal of Neurophysiology, 2013, 110, 2337-2349.	1.8	38
81	How Consistent are Cognitive Impairments in Patients with Cerebellar Disorders?. Behavioural Neurology, 2010, 23, 81-100.	2.1	44
82	How consistent are cognitive impairments in patients with cerebellar disorders?. Behavioural Neurology, 2010, 23, 81-100.	2.1	21
83	Kinematics of Arm Joint Rotations in Cerebellar and Unskilled Subjects Associated with the Inability to Throw Fast. Cerebellum, 2008, 7, 366-378.	2.5	18
84	Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Movement Disorders, 2008, 23, 2232-2238.	3.9	125
85	Benign SCA14 phenotype in a German patient associated with a missense mutation in exon 3 of the <i>PRKCG</i> gene. Movement Disorders, 2007, 22, 2135-2136.	3.9	15
86	Cerebellar contributions to cognitive functions: A progress report after two decades of research. Cerebellum, 2007, 6, 159-62.	2.5	225