Thomas Loerting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/810732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water: A Tale of Two Liquids. Chemical Reviews, 2016, 116, 7463-7500.	47.7	627
2	A second distinct structural "state―of high-density amorphous ice at 77 K and 1 bar. Physical Chemistry Chemical Physics, 2001, 3, 5355-5357.	2.8	296
3	Water's second glass transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17720-17725.	7.1	243
4	Structure of a New Dense Amorphous Ice. Physical Review Letters, 2002, 89, 205503.	7.8	200
5	Ice nucleation by water-soluble macromolecules. Atmospheric Chemistry and Physics, 2015, 15, 4077-4091.	4.9	198
6	X-ray and Neutron Scattering of Water. Chemical Reviews, 2016, 116, 7570-7589.	47.7	170
7	How many amorphous ices are there?. Physical Chemistry Chemical Physics, 2011, 13, 8783.	2.8	167
8	Amorphous ices: experiments and numerical simulations. Journal of Physics Condensed Matter, 2006, 18, R919-R977.	1.8	163
9	Diffusive dynamics during the high-to-low density transition in amorphous ice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8193-8198.	7.1	155
10	Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Engineering, Design and Selection, 2001, 14, 27-37.	2.1	154
11	On the Surprising Kinetic Stability of Carbonic Acid (H2CO3). Angewandte Chemie - International Edition, 2000, 39, 891-894.	13.8	152
12	<i>Colloquium</i> : Water's controversial glass transitions. Reviews of Modern Physics, 2016, 88, .	45.6	146
13	Water polyamorphism: Reversibility and (dis)continuity. Journal of Chemical Physics, 2008, 128, 044510.	3.0	134
14	The local and intermediate range structures of the five amorphous ices at 80K and ambient pressure: A Faber-Ziman and Bhatia-Thornton analysis. Journal of Chemical Physics, 2006, 125, 194502.	3.0	117
15	Equilibrated High-Density Amorphous Ice and Its First-Order Transition to the Low-Density Form. Journal of Physical Chemistry B, 2011, 115, 14141-14148.	2.6	116
16	Amorphous Ice: Stepwise Formation of Very-High-Density Amorphous Ice from Low-Density Amorphous Ice at 125ÂK. Physical Review Letters, 2006, 96, 025702.	7.8	103
17	Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land― Journal of Physical Chemistry Letters, 2015, 6, 2826-2832.	4.6	102
18	Liquid-like relaxation in hyperquenched water at â‰⊈40 K. Physical Chemistry Chemical Physics, 2005, 7, 3210.	2.8	99

#	Article	IF	CITATIONS
19	Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13336-13344.	7.1	99
20	Toward elimination of discrepancies between theory and experiment: The rate constant of the atmospheric conversion of SO3 to H2SO4. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8874-8878.	7.1	91
21	Hydrogen chloride-induced surface disordering on ice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9422-9427.	7.1	88
22	Towards the Experimental Decomposition Rate of Carbonic Acid (H2CO3) in Aqueous Solution. Chemistry - A European Journal, 2002, 8, 66-73.	3.3	84
23	The optimal tunneling path for the proton transfer in malonaldehyde. Journal of Chemical Physics, 2002, 117, 1962-1966.	3.0	80
24	Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water. Scientific Reports, 2012, 2, 390.	3.3	80
25	Toward Elimination of Discrepancies between Theory and Experiment:  Double Proton Transfer in Dimers of Carboxylic Acids. Journal of the American Chemical Society, 1998, 120, 12595-12600.	13.7	72
26	Reversibility and isotope effect of the calorimetric glass → liquid transition of low-density amorphous ice. Physical Chemistry Chemical Physics, 2010, 12, 708-712.	2.8	72
27	Water-Mediated Proton Transfer:Â A Mechanistic Investigation on the Example of the Hydration of Sulfur Oxides. Journal of Physical Chemistry A, 2001, 105, 5137-5145.	2.5	69
28	Modeling Anhydrous and Aqua Copper(II) Amino Acid Complexes:Â A New Molecular Mechanics Force Field Parametrization Based on Quantum Chemical Studies and Experimental Crystal Data. Inorganic Chemistry, 2003, 42, 2268-2279.	4.0	69
29	Glass transition in hyperquenched water?. Nature, 2005, 435, E1-E1.	27.8	67
30	The low-temperature dynamics of recovered ice XII as studied by differential scanning calorimetry: a comparison with ice V. Physical Chemistry Chemical Physics, 2003, 5, 3507.	2.8	63
31	Isobaric annealing of high-density amorphous ice between 0.3 and 1.9 GPa: in situ density values and structural changes. Physical Chemistry Chemical Physics, 2006, 8, 386-397.	2.8	62
32	Carbonic Acid:  From Polyamorphism to Polymorphism. Journal of the American Chemical Society, 2007, 129, 13863-13871.	13.7	61
33	Relaxation effects in low density amorphous ice: Two distinct structural states observed by neutron diffraction. Journal of Chemical Physics, 2009, 130, 204502.	3.0	59
34	Predictions of rate constants and estimates for tunneling splittings of concerted proton transfer in small cyclic water clusters. Journal of Chemical Physics, 1998, 109, 2672-2679.	3.0	57
35	Anomalously large isotope effect in the glass transition of water. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17402-17407.	7.1	57
36	Volumetric study consistent with a glass-to-liquid transition in amorphous ices under pressure. Physical Review B, 2011, 83, .	3.2	56

#	Article	IF	CITATIONS
37	Cryoflotation: Densities of Amorphous and Crystalline Ices. Journal of Physical Chemistry B, 2011, 115, 14167-14175.	2.6	54
38	Interaction of Hydrogen Chloride with Ice Surfaces:  The Effects of Grain Size, Surface Roughness, and Surface Disorder. Journal of Physical Chemistry A, 2007, 111, 6274-6284.	2.5	53
39	Aqueous Carbonic Acid (H ₂ CO ₃). ChemPhysChem, 2010, 11, 2305-2309.	2.1	53
40	The glass transition in high-density amorphous ice. Journal of Non-Crystalline Solids, 2015, 407, 423-430.	3.1	52
41	The Raman Spectrum of Ice XII and Its Relation to that of a New "High-Pressure Phase of H2O Iceâ€. Journal of Physical Chemistry B, 2002, 106, 1-6.	2.6	51
42	Spectroscopic Observation of Matrixâ€Isolated Carbonic Acid Trapped from the Gas Phase. Angewandte Chemie - International Edition, 2011, 50, 1939-1943.	13.8	50
43	Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing. Pharmaceutical Research, 2018, 35, 101.	3.5	49
44	An accurate semiclassical method to predict ground-state tunneling splittings. Journal of Chemical Physics, 2002, 117, 1967-1974.	3.0	47
45	(Meta-)stability domain of ice XII revealed between â‰^158–212 K and â‰^0.7–1.5 GPa on isobaric heating high-density amorphous ice. Journal of Chemical Physics, 2002, 116, 3171-3174.	of 3.0	46
46	Structural characterization of ice XIX as the second polymorph related to ice VI. Nature Communications, 2021, 12, 1128.	12.8	45
47	Structural study of low concentration LiCl aqueous solutions in the liquid, supercooled, and hyperquenched glassy states. Journal of Chemical Physics, 2011, 134, 024515.	3.0	44
48	Glass polymorphism in glycerol–water mixtures: II. Experimental studies. Physical Chemistry Chemical Physics, 2016, 18, 11058-11068.	2.8	44
49	About the Stability of Sulfurous Acid (H2SO3) and Its Dimer. Chemistry - A European Journal, 2002, 8, 5644-5651.	3.3	43
50	Structural transitions in amorphous H ₂ O and D ₂ O: the effect of temperature. Journal of Physics Condensed Matter, 2008, 20, 494212.	1.8	41
51	Advances in the study of supercooled water. European Physical Journal E, 2021, 44, 143.	1.6	40
52	Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nature Chemistry, 2010, 2, 197-201.	13.6	39
53	Pure Ice IV from High-Density Amorphous Ice. Journal of Physical Chemistry B, 2002, 106, 5587-5590.	2.6	37
54	Pure ices IV and XII from high-density amorphous ice. Canadian Journal of Physics, 2003, 81, 25-32.	1.1	37

#	Article	IF	CITATIONS
55	Neutron Scattering Analysis of Water's Glass Transition and Micropore Collapse in Amorphous Solid Water. Physical Review Letters, 2016, 116, 215501.	7.8	37
56	Relaxation Time of High-Density Amorphous Ice. Physical Review Letters, 2012, 108, 225901.	7.8	36
57	Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9191-9196.	7.1	36
58	On the Formation of the Sulfonate Ion from Hydrated Sulfur Dioxide. Journal of Physical Chemistry A, 2004, 108, 3859-3864.	2.5	35
59	The relation between high-density and very-high-density amorphous ice. Physical Chemistry Chemical Physics, 2006, 8, 2810.	2.8	35
60	Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations. Journal of Physical Chemistry C, 2014, 118, 10989-10997.	3.1	35
61	Experiments indicating a second hydrogen ordered phase of ice VI. Chemical Science, 2018, 9, 4224-4234.	7.4	35
62	From parallel to single crystallization kinetics in high-density amorphous ice. Physical Review B, 2013, 88, .	3.2	34
63	Raman Spectroscopic Study of the Phase Transition of Amorphous to Crystalline β arbonic Acid. Angewandte Chemie - International Edition, 2009, 48, 2690-2694.	13.8	33
64	Matrix Isolation Studies of Carbonic Acid—The Vapor Phase above the β-Polymorph. Journal of the American Chemical Society, 2013, 135, 7732-7737.	13.7	33
65	Small-angle neutron scattering study of micropore collapse in amorphous solid water. Physical Chemistry Chemical Physics, 2014, 16, 16013-16020.	2.8	33
66	Glass polymorphism and liquid–liquid phase transition in aqueous solutions: experiments and computer simulations. Physical Chemistry Chemical Physics, 2019, 21, 23238-23268.	2.8	33
67	Visualization of Freezing Process in situ upon Cooling and Warming of Aqueous Solutions. Scientific Reports, 2015, 4, 7414.	3.3	32
68	Pressure-induced transformations in LiCl–H ₂ O at 77 K. Physical Chemistry Chemical Physics, 2014, 16, 18553-18562.	2.8	30
69	Large Curvature Tunneling Effects Reveal Concerted Hydrogen Exchange Rates in Cyclic Hydrogen Fluoride Clusters Comparable to Carboxylic Acid Dimers. Journal of the American Chemical Society, 1998, 120, 404-412.	13.7	29
70	Raman Spectroscopic Study on Hydrogen Bonding in Recovered Ice IV. Journal of Physical Chemistry B, 2003, 107, 2802-2807.	2.6	27
71	Toward elimination of discrepancies between theory and experiment: The gas-phase reaction of N2O5 with H2O. Physical Chemistry Chemical Physics, 2003, 5, 487-495.	2.8	27
72	The structure, modelling and dynamics of 2,7-diisopropoxy-1,8-diaryInaphthalenes. Perkin Transactions II RSC, 2002, , 1510-1519.	1.1	26

#	Article	IF	CITATIONS
73	Local structural order in carbonic acid polymorphs: Raman and FTâ€IR spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 108-115.	2.5	26
74	Glass polymorphism in glycerol–water mixtures: I. A computer simulation study. Physical Chemistry Chemical Physics, 2016, 18, 11042-11057.	2.8	26
75	On the competing hydrations of sulfur dioxide and sulfur trioxide in our atmosphere. Chemical Communications, 2000, , 999-1000.	4.1	25
76	Shrinking water's no man's land by lifting its low-temperature boundary. Physical Review B, 2015, 91, .	3.2	25
77	Daunomycin Intercalation Stabilizes Distinct Backbone Conformations of DNA. Journal of Biomolecular Structure and Dynamics, 2004, 21, 713-724.	3.5	24
78	Compression-rate dependence of the phase transition from hexagonal ice to ice II and/or ice III. Physical Review B, 2008, 77, .	3.2	24
79	Formation and Stability of Bulk Carbonic Acid (H ₂ CO ₃) by Protonation of Tropospheric Calcite. ChemPhysChem, 2012, 13, 3087-3091.	2.1	23
80	Cordierite under hydrostatic compression: Anomalous elastic behavior as a precursor for a pressure-induced phase transition. American Mineralogist, 2014, 99, 479-493.	1.9	23
81	Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects. Journal of Chemical Physics, 2017, 147, 034506.	3.0	23
82	Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions. Journal of Chemical Physics, 2019, 151, 014503.	3.0	23
83	Distribution of Protein Content and Number of Aggregates in Monoclonal Antibody Formulation After Large-Scale Freezing. AAPS PharmSciTech, 2019, 20, 72.	3.3	23
84	HonPt(110): An atypical chemisorption site at low coverages. Physical Review B, 2004, 70, .	3.2	22
85	Chemisorption of hydrogen on the missing-row Pt(110)-(1 × 2) surface. Topics in Catalysis, 2007, 46, 161-167.	2.8	22
86	Dynamics enhanced by HCl doping triggers 60% Pauling entropy release at the ice XII–XIV transition. Nature Communications, 2015, 6, 7349.	12.8	22
87	Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid. Journal of Physical Chemistry A, 2015, 119, 4515-4523.	2.5	22
88	The interplay of VSCF/VCI calculations and matrix-isolation IR spectroscopy – Mid infrared spectrum of CH3CH2F and CD3CD2F. Journal of Molecular Spectroscopy, 2020, 367, 111224.	1.2	22
89	Dynamics of DNA:  BI and BII Phosphate Backbone Transitions. Journal of Physical Chemistry B, 2004, 108, 2470-2476.	2.6	21
90	Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins. Scientific Reports, 2017, 7, 11901.	3.3	21

#	Article	IF	CITATIONS
91	Sulfurous acid (H2SO3) on Io?. Icarus, 2004, 169, 242-249.	2.5	20
92	Distinguishing ice β-XV from deep glassy ice VI: Raman spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 15452-15462.	2.8	20
93	Open questions on the structures of crystalline water ices. Communications Chemistry, 2020, 3, .	4.5	20
94	Reactions of HOCl + HCl +nH2O and HOCl + HBr +nH2O. Journal of Physical Chemistry A, 2002, 106, 7850-7857.	2.5	19
95	Dynamics anomaly in high-density amorphous ice between 0.7 and 1.1 GPa. Physical Review B, 2016, 93, .	3.2	19
96	The structure, modelling and dynamics of hindered 5,6-diarylacenaphthenes. Perkin Transactions II RSC, 2001, , 459-467.	1.1	17
97	High Density Amorphous Ice from Cubic Ice. ChemPhysChem, 2006, 7, 1203-1206.	2.1	17
98	Pressure-amorphized cubic structure II clathrate hydrate: crystallization in slow motion. Physical Chemistry Chemical Physics, 2011, 13, 2167-2171.	2.8	17
99	Does the emulsification procedure influence freezing and thawing of aqueous droplets?. Journal of Chemical Physics, 2016, 145, 211923.	3.0	17
100	Genuine antiplasticizing effect of water on a glass-former drug. Scientific Reports, 2017, 7, 7470.	3.3	17
101	Calorimetric study of water's two glass transitions in the presence of LiCl. Physical Chemistry Chemical Physics, 2018, 20, 6401-6408.	2.8	17
102	Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures. Journal of Chemical Physics, 2018, 148, 124509.	3.0	17
103	Experimental evidence for glass polymorphism in vitrified water droplets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
104	Doping-enhanced dipolar dynamics in ice V as a precursor of hydrogen ordering in ice XIII. Physical Review B, 2016, 94, .	3.2	16
105	High-density amorphous ice: nucleation of nanosized low-density amorphous ice. Journal of Physics Condensed Matter, 2018, 30, 034002.	1.8	16
106	Correlation in low-dimensional electronic states on metal surfaces. New Journal of Physics, 2005, 7, 102-102.	2.9	15
107	Nature of Water's Second Glass Transition Elucidated by Doping and Isotope Substitution Experiments. Physical Review X, 2019, 9, .	8.9	15
108	Clathrate hydrate formation after CO2–H2O vapour deposition. Physical Chemistry Chemical Physics, 2011, 13, 19765.	2.8	14

#	Article	IF	CITATIONS
109	Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition. Physical Chemistry Chemical Physics, 2013, 15, 9308.	2.8	14
110	Temperature-induced amorphisation of hexagonal ice. Physical Chemistry Chemical Physics, 2015, 17, 5403-5412.	2.8	14
111	Crystallisation of the amorphous ices in the intermediate pressure regime. Scientific Reports, 2017, 7, 3995.	3.3	14
112	Fluctuations and Phase Separation in a Quasi-One-Dimensional System. Physical Review Letters, 2007, 98, 186101.	7.8	13
113	Novel Method to Detect the Volumetric Glass → Liquid Transition at High Pressures: Glycerol as a Test Case. Journal of Physical Chemistry B, 2007, 111, 8038-8044.	2.6	13
114	Limits of metastability in amorphous ices: ² H-NMR relaxation. Physical Chemistry Chemical Physics, 2013, 15, 576-580.	2.8	13
115	Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa. Journal of Chemical Physics, 2018, 148, 124508.	3.0	13
116	Impact of Substrate, Aging, and Size on the Two Freezing Events of (NH ₄) ₂ SO ₄ /H ₂ O Droplets. Journal of Physical Chemistry C, 2011, 115, 10682-10693.	3.1	12
117	Limits of metastability in amorphous ices: the neutron scattering Debye–Waller factor. Physical Chemistry Chemical Physics, 2012, 14, 16386.	2.8	12
118	Tomography based numerical simulation of the demagnetizing field in soft magnetic composites. Journal of Applied Physics, 2015, 117, .	2.5	12
119	The Reaction Rate Constant of Chlorine Nitrate Hydrolysis. Chemistry - A European Journal, 2001, 7, 1662-1669.	3.3	11
120	Hexagonal ice transforms at high pressures and compression rates directly into "doubly metastable― ice phases. Journal of Chemical Physics, 2009, 131, 224514.	3.0	11
121	Carbonic acid monoethyl ester as a pure solid and its conformational isomerism in the gas-phase. RSC Advances, 2017, 7, 22222-22233.	3.6	11
122	High-density amorphous ice: Molecular dynamics simulations of the glass transition at 0.3 GPa. Journal of Chemical Physics, 2009, 131, 114502.	3.0	10
123	Solution coating around ice particles of incipient cirrus clouds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2439-E2439.	7.1	10
124	Thermodynamic and kinetic isotope effects on the order–disorder transition of ice XIV to ice XII. Physical Chemistry Chemical Physics, 2018, 20, 21607-21616.	2.8	10
125	Amorphous and crystalline ices studied by dielectric spectroscopy. Journal of Chemical Physics, 2019, 150, 244501.	3.0	10
126	Optical cryomicroscopy and differential scanning calorimetry of buffer solutions containing cryoprotectants. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 127-140.	4.3	10

#	Article	IF	CITATIONS
127	Vibrational study of anharmonicity, supramolecular structure, and hydrogen bonding in two octanol isomers. Vibrational Spectroscopy, 2015, 79, 59-66.	2.2	9
128	Distinct Speciation of Naphthalene Vapor Deposited on Ice Surfaces at 253 or 77 K: Formation of Submicrometer-Sized Crystals or an Amorphous Layer. Journal of Physical Chemistry C, 2018, 122, 11945-11953.	3.1	9
129	Toward Elimination of Discrepancies between Theory and Experiment: Anharmonic Rotational–Vibrational Spectrum of Water in Solid Noble Gas Matrices. Journal of Physical Chemistry A, 2019, 123, 8234-8242.	2.5	9
130	Supercooled water: A polymorphic liquid with a cornucopia of behaviors. Journal of Chemical Physics, 2019, 151, 210401.	3.0	9
131	Alpha arbonic Acid Revisited: Carbonic Acid Monomethyl Ester as a Solid and its Conformational Isomerism in the Gas Phase. Chemistry - A European Journal, 2020, 26, 285-305.	3.3	9
132	Decomposing anharmonicity and mode-coupling from matrix effects in the IR spectra of matrix-isolated carbon dioxide and methane. Physical Chemistry Chemical Physics, 2020, 22, 17932-17947.	2.8	9
133	Temperature-Dependent Ways of Proton TransferA Benchmark Study on Cyclic HF Oligomers. Journal of Physical Chemistry A, 1999, 103, 9022-9028.	2.5	8
134	Experimental evidence for two distinct deeply supercooled liquid states of water – Response to "Comment on †Water's second glass transitionâ€â€™, by G.P. Johari, Thermochim. Acta (2015). Thermochimica Acta, 2015, 617, 200-207.	2.7	8
135	Formation and decomposition of CO2-filled ice. Journal of Chemical Physics, 2017, 147, 134503.	3.0	8
136	Class transition of LiCl aqueous solutions confined in mesoporous silica. Journal of Chemical Physics, 2019, 151, .	3.0	8
137	Macroscopic defects upon decomposition of CO ₂ clathrate hydrate crystals. Physical Chemistry Chemical Physics, 2019, 21, 9694-9708.	2.8	8
138	Reactions of HOBr + HCl + nH2O and HOBr + HBr + nH2O. Chemical Physics Letters, 2003, 372, 569-576.	2.6	7
139	Phase separation during freezing upon warming of aqueous solutions. Journal of Chemical Physics, 2014, 141, 18C533.	3.0	7
140	On the crystallisation temperature of very high-density amorphous ice. Physical Chemistry Chemical Physics, 2018, 20, 12589-12598.	2.8	7
141	Single freezing and triple melting of micrometre-scaled (NH4)2SO4/H2O droplets. Physical Chemistry Chemical Physics, 2011, 13, 19704.	2.8	6
142	Near-Infrared Spectra of High-Density Crystalline H ₂ O Ices II, IV, V, VI, IX, and XII. Journal of Physical Chemistry A, 2021, 125, 1062-1068.	2.5	6
143	Calorimetric Investigation of Hydrogen-Atom Sublattice Transitions in the Ice VI/XV/XIX Trio. Journal of Physical Chemistry B, 2021, 125, 11777-11783.	2.6	6
144	Ferroelectric Transition Vanishes in (NH ₄) ₂ SO ₄ Precipitated in Small-Sized Aqueous Droplets. Journal of Physical Chemistry C, 2012, 116, 9372-9377.	3.1	5

#	Article	IF	CITATIONS
145	Simulation of high-density water: Its glass transition for various water models. Journal of Chemical Physics, 2014, 140, 134504.	3.0	5
146	Ex situ studies of relaxation and crystallization in high-density amorphous ice annealed at 0.1 and 0.2 GPa. Thermochimica Acta, 2016, 636, 11-22.	2.7	5
147	Using Excimeric Fluorescence to Study How the Cooling Rate Determines the Behavior of Naphthalenes in Freeze-Concentrated Solutions: Vitrification and Crystallization. Journal of Physical Chemistry B, 2020, 124, 10556-10566.	2.6	5
148	Absence of the liquid-liquid phase transition in aqueous ionic liquids. Physical Review E, 2020, 102, 060601.	2.1	5
149	Different freezing behavior of millimeter- and micrometer-scaled (NH ₄) ₂ SO ₄ /H ₂ O droplets. Journal of Physics Condensed Matter, 2011, 23, 035103.	1.8	4
150	Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring. Materials, 2016, 9, 668.	2.9	4
151	Structural differences between unannealed and expanded high-density amorphous ice based on isotope substitution neutron diffraction. Molecular Physics, 2019, 117, 3207-3216.	1.7	4
152	Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbonâ€Based Electrodes with Potential Application for Organic Naâ€lon Batteries. Israel Journal of Chemistry, 2022, 62, .	2.3	4
153	Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition . Journal of Chemical Physics, 0, , .	3.0	4
154	Modeling the heterogeneous reaction probability for chlorine nitrate hydrolysis on ice. Journal of Geophysical Research, 2006, 111, .	3.3	3
155	Note: Molecular dynamics studies of high-density amorphous ice: Influence of long-range Coulomb interactions. Journal of Chemical Physics, 2012, 136, 026101.	3.0	3
156	Dynamic signatures of the transition from stacking disordered to hexagonal ice: Dielectric and nuclear magnetic resonance studies. Journal of Chemical Physics, 2018, 148, 134502.	3.0	3
157	On the synergy of matrix-isolation infrared spectroscopy and vibrational configuration interaction computations. Theoretical Chemistry Accounts, 2020, 139, 174.	1.4	3
158	Calorimetric Signature of Deuterated Ice II: Turning an Endotherm to an Exotherm. Journal of Physical Chemistry Letters, 2020, 11, 8268-8274.	4.6	3
159	High-Density Amorphous Ice and its Phase Transition to Ice XII. , 2002, , 325-333.		3
160	Oxygen NMR of high-density and low-density amorphous ice. Journal of Chemical Physics, 2022, 156, 084503.	3.0	3
161	Increase of Radiative Forcing through Midinfrared Absorption by Stable CO ₂ Dimers?. Journal of Physical Chemistry A, 2022, 126, 2966-2975.	2.5	3
162	Fluctuations and phase separation in Br/Pt(110). Surface Science, 2007, 601, 4386-4389.	1.9	2

#	Article	IF	CITATIONS
163	Molecular Dynamics Simulations on the Glass-to-liquid Transition in High Density Amorphous Ice. Zeitschrift Fur Physikalische Chemie, 2009, 223, 1047-1062.	2.8	2
164	Back Cover: Spectroscopic Observation of Matrix-Isolated Carbonic Acid Trapped from the Gas Phase (Angew. Chem. Int. Ed. 8/2011). Angewandte Chemie - International Edition, 2011, 50, 1946-1946.	13.8	2
165	Comment on Y. Yoshimura: "Pressure-induced phase transition of ice in aqueous KOH solution― High Pressure Research, 2011, 31, 488-490.	1.2	2
166	Nanoscale structure of amorphous solid water: What determines the porosity in ASW?. Proceedings of the International Astronomical Union, 2019, 15, 368-369.	0.0	2
167	The impact of temperature and unwanted impurities on slow compression of ice. Physical Chemistry Chemical Physics, 2021, 24, 35-41.	2.8	2
168	Raman spectroscopy study of the slow order–order transformation of deuterium atoms: Ice XIX decay and ice XV formation. Journal of Chemical Physics, 2022, 156, 154507.	3.0	2
169	Extended method for adiabatic mode reordering. Journal of Computational Chemistry, 2003, 24, 386-395.	3.3	1
170	Comment on "Experimental evidence for excess entropy discontinuities in glass-forming solutions―[J. Chem. Phys.136, 074515 (2012)]. Journal of Chemical Physics, 2013, 139, 047101.	3.0	1
171	Isotope effects on the dynamics of amorphous ices and aqueous phosphoric acid solutions. Physical Chemistry Chemical Physics, 2022, 24, 14846-14856.	2.8	1
172	About the Stability of Sulfurous Acid (H2SO3) and Its Dimer ChemInform, 2003, 34, no.	0.0	0
173	The many faces of "evidence―for dependent and independent variables in the â€~Stewart approach': repl to Lang. Intensive Care Medicine, 2010, 36, 1626-1627.	У _{8.2}	0
174	Rücktitelbild: Spektroskopische Beobachtung von matrixisolierter Kohlensäre, abgeschieden aus der Gasphase (Angew. Chem. 8/2011). Angewandte Chemie, 2011, 123, 1988-1988.	2.0	0
175	Chapter 3 Solids and Fluids at Low Temperatures. , 2016, , 27-54.		0
176	Co-deposition of gas hydrates by pressurized thermal evaporation. Physical Chemistry Chemical Physics, 2020, 22, 4266-4275.	2.8	0
177	Wasser: 1 Molekül, 2 Flüssigkeiten, 23 Festkörper. Nachrichten Aus Der Chemie, 2022, 70, 63-67.	0.0	0