Claudio J Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8107241/publications.pdf Version: 2024-02-01

CIAUDIO I DEDEZ

#	Article	IF	CITATIONS
1	Dodecenylsuccinic anhydride modified chitosan hydrogels for the sustained delivery of hydrophobic drugs. The case of thymol buccal delivery. Journal of Applied Polymer Science, 2022, 139, 51432.	1.3	6
2	Tuning the antimicrobial activity of collagen biomaterials through a liposomal approach. Journal of Applied Polymer Science, 2021, 138, 50330.	1.3	14
3	Collagen Hydrogels Loaded with Silver Nanoparticles and Cannabis Sativa Oil. Antibiotics, 2021, 10, 1420.	1.5	23
4	Dodecenylsuccinic anhydride modified collagen hydrogels loaded with simvastatin as skin wound dressings. Journal of Biomedical Materials Research - Part A, 2019, 107, 1999-2012.	2.1	18
5	Effect of radiation-induced oxidative degradation on the non-isothermal crystallization of ethylene-butene copolymer. Polymer Degradation and Stability, 2019, 170, 109001.	2.7	1
6	Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. Journal of Colloid and Interface Science, 2019, 536, 372-380.	5.0	55
7	Development of Silver Nanoparticles/Gelatin Thermoresponsive Nanocomposites: Characterization and Antimicrobial Activity. Current Pharmaceutical Design, 2019, 25, 4121-4129.	0.9	14
8	Riboflavin-UVA gelatin crosslinking: DesignÂof a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering. Advanced Materials Letters, 2019, 10, 324-328.	0.3	6
9	Influence of GO reinforcement on keratin based smart hydrogel and its application for emerging pollutants removal. Journal of Environmental Chemical Engineering, 2018, 6, 7021-7028.	3.3	20
10	Nonâ€isothermal crystallization of poly(εâ€caprolactone) nanocomposites with soy lecithinâ€modified bentonite. Polymer Crystallization, 2018, 1, e10020.	0.5	2
11	Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity. Colloids and Surfaces B: Biointerfaces, 2018, 169, 82-91.	2.5	26
12	Sustainable and smart keratin hydrogel with pH-sensitive swelling and enhanced mechanical properties. Materials Science and Engineering C, 2017, 78, 619-626.	3.8	45
13	Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery. Materials Science and Engineering C, 2017, 81, 588-596.	3.8	67
14	Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 16280-16288.	4.0	128
15	Internal structure analysis of Polypropylene/quartz composites related to their toughness. Polymer Composites, 2016, 37, 1488-1496.	2.3	7
16	Use of SSA to detect structural changes in metallocenic ethylene/α-olefin copolymers and their free radical post-reactor modifications. Polymer Degradation and Stability, 2016, 125, 43-48.	2.7	4
17	Chitin hydrogel reinforced with TiO 2 nanoparticles as an arsenic sorbent. Chemical Engineering Journal, 2016, 285, 581-587.	6.6	82
18	Chitin based hybrid composites reinforced with graphene derivatives: a nanoscale study. RSC Advances, 2015, 5, 63813-63820.	1.7	9

CLAUDIO J PEREZ

#	Article	IF	CITATIONS
19	Water soluble nanocomposite films based on poly(vinyl alcohol) and chemically modified montmorillonites. Journal of Composite Materials, 2014, 48, 545-553.	1.2	22
20	Preparation and characterization of micro and nanocomposites based on poly(vinyl alcohol) for packaging applications. Journal of Materials Science, 2013, 48, 7088-7096.	1.7	14
21	A new method for the preparation of biocompatible silica coated-collagen hydrogels. Journal of Materials Chemistry B, 2013, 1, 6283.	2.9	27
22	SSA study of early polyethylenes degradation stages. Effects of attack rate, of average branch length, and of backbone polymethylene sequences length distributions. Polymer Degradation and Stability, 2013, 98, 177-183.	2.7	11
23	Gamma irradiated LDPE in presence of oxygen. Part I. Non-isothermal crystallization. Thermochimica Acta, 2013, 570, 64-73.	1.2	11
24	Adhesion control for injection overmolding of elastomeric propylene copolymers on polypropylene. Effects of block and random microstructures. International Journal of Adhesion and Adhesives, 2013, 46, 44-55.	1.4	24
25	Crystallization behavior of random ethylene–butene copolymers modified with organic peroxide. Thermochimica Acta, 2012, 528, 15-22.	1.2	4
26	Prepolymerized organic–inorganic hybrid nanoparticles as fillers for light-cured methacrylate monomers. Journal of Materials Science, 2012, 47, 2951-2959.	1.7	9
27	Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer. Journal of Thermal Analysis and Calorimetry, 2012, 107, 633-643.	2.0	20
28	Depth-Profiling by Confocal Raman Microscopy (CRM): Data Correction by Numerical Techniques. Applied Spectroscopy, 2011, 65, 342-348.	1.2	5
29	Correction of optical distortions in dry depth profiling with confocal Raman microspectroscopy. Journal of Raman Spectroscopy, 2011, 42, 1330-1334.	1.2	29
30	Shape memory epoxies based on networks with chemical and physical crosslinks. European Polymer Journal, 2011, 47, 362-369.	2.6	111
31	Liquidâ€Glassy Polymer Interphases: Diffusion Kinetics in Conditions of Unlimited Liquid Supply. Macromolecular Chemistry and Physics, 2009, 210, 359-366.	1.1	2
32	Adhesion control for injection overmolding of polypropylene with elastomeric ethylene copolymers. Polymer Engineering and Science, 2009, 49, 1886-1893.	1.5	21
33	The use of SSA fractionation to detect changes in the molecular structure of model ethylene–butene copolymers modified by peroxide crosslinking. Polymer Degradation and Stability, 2009, 94, 1639-1645.	2.7	16
34	Modification of model ethylene–butene copolymers using an organic peroxide. Polymer, 2005, 46, 725-732.	1.8	10
35	Use of preimpregnated sisal yarn in woven reinforced polypropylene sheets: Thermoformability and mechanical properties. Polymer Engineering and Science, 2005, 45, 976-983.	1.5	1
36	Tensile mechanical behavior of linear high-density polyethylenes modified with organic peroxide. Polymer Engineering and Science, 2003, 43, 1624-1633.	1.5	10

#	Article	IF	CITATIONS
37	Rheological study of linear high density polyethylenes modified with organic peroxide. Polymer, 2002, 43, 2711-2720.	1.8	41