Yi Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8106425/publications.pdf

Version: 2024-02-01

155	9,531	54	92
papers	citations	h-index	g-index
155	155	155	12234 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Epitaxial growth of bilayer Bi(110) on two-dimensional ferromagnetic Fe ₃ GeTe ₂ . Journal of Physics Condensed Matter, 2022, 34, 074003.	0.7	5
2	First-principles study on the electronic structures and diffusion behaviors of intrinsic defects in BiOCl. Computational Materials Science, 2022, 203, 111088.	1.4	6
3	Large-Gap Quantum Spin Hall State and Temperature-Induced Lifshitz Transition in Bi ₄ Br ₄ . ACS Nano, 2022, 16, 3036-3044.	7.3	17
4	Wearable Piezoelectric Nanogenerators Based on Core–Shell Ga-PZT@GaO _{<i>x</i>} Nanorod-Enabled P(VDF-TrFE) Composites. ACS Applied Materials & Diterfaces, 2022, 14, 7990-8000.	4.0	21
5	Role of surface wettability in photoelectrocatalytic oxygen evolution reactions. Materials Today Energy, 2022, 25, 100961.	2.5	5
6	Defects in two-dimensional elemental materials beyond graphene. , 2022, , 43-88.		1
7	Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes. ACS Nano, 2022, 16, 9667-9678.	7.3	126
8	Roles of Cocatalysts on BiVO ₄ Photoanodes for Photoelectrochemical Water Oxidation: A Minireview. Energy & En	2.5	14
9	Boosting Lightâ€Driven Photocatalytic Water Splitting of Bi ₄ NbO ₈ Br by Polarization Field. Solar Rrl, 2022, 6, .	3.1	4
10	Technical evolution for the identification of Xenes: from microscopy to spectroscopy., 2022,, 225-254.		0
11	Galliumâ€based liquid metals for lithiumâ€ion batteries. , 2022, 1, 354-372.		39
12	Facet-dependent Electronic Quantum Diffusion in the High-Order Topological Insulator <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi>Physical Review Applied, 2022, 17, .</mml:mi></mml:msub></mml:math>	i> B 5 <td>l:<mark>6</mark>i><mml:m< td=""></mml:m<></td>	l: <mark>6</mark> i> <mml:m< td=""></mml:m<>
13	Progress and perspectives of bismuth oxyhalides in catalytic applications. Materials Today Physics, 2021, 16, 100294.	2.9	37
14	Theoretical insights into nitrogen oxide activation on halogen defect-rich {001} facets of bismuth oxyhalide. Journal of Materials Science and Technology, 2021, 77, 217-222.	5.6	6
15	Nearâ€Infraredâ€Driven Photocatalysts: Design, Construction, and Applications. Small, 2021, 17, e1904107.	5.2	63
16	Moiréâ€Potentialâ€Induced Band Structure Engineering in Graphene and Silicene. Small, 2021, 17, e1903769.	5.2	9
17	Gallium–Indium–Tin Liquid Metal Nanodroplet-Based Anisotropic Conductive Adhesives for Flexible Integrated Electronics. ACS Applied Nano Materials, 2021, 4, 550-557.	2.4	27
18	Application of Scanning Tunneling Microscopy in Electrocatalysis and Electrochemistry. Electrochemical Energy Reviews, 2021, 4, 249-268.	13.1	26

#	Article	IF	CITATIONS
19	General Programmable Growth of Hybrid Core–Shell Nanostructures with Liquid Metal Nanodroplets. Advanced Materials, 2021, 33, e2008024.	11.1	28
20	Reconstructing the Surface Structure of NaREF ₄ Upconversion Nanocrystals with a Novel K ⁺ Treatment. Chemistry of Materials, 2021, 33, 2548-2556.	3.2	5
21	Atomic Structural Evolution of Singleâ€Layer Pt Clusters as Efficient Electrocatalysts. Small, 2021, 17, e2100732.	5.2	26
22	Germanium Nanosheets with Dirac Characteristics as a Saturable Absorber for Ultrafast Pulse Generation. Advanced Materials, 2021, 33, e2101042.	11.1	38
23	Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nature Communications, 2021, 12, 4519.	5.8	139
24	Germanene Nanosheets: Achieving Superior Sodiumâ€ion Storage via Pseudointercalation Reactions. Small Structures, 2021, 2, 2100041.	6.9	20
25	Kondo Holes in the Two-Dimensional Itinerant Ising Ferromagnet Fe ₃ GeTe ₂ . Nano Letters, 2021, 21, 6117-6123.	4.5	23
26	Pressure Engineering for Extending Spectral Response Range and Enhancing Photoelectric Properties of Iodine. Advanced Optical Materials, 2021, 9, 2101163.	3.6	16
27	Epitaxial Growth of Quasi-One-Dimensional Bismuth-Halide Chains with Atomically Sharp Topological Non-Trivial Edge States. ACS Nano, 2021, 15, 14850-14857.	7.3	12
28	Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Reports Physical Science, 2021, 2, 100531.	2.8	31
29	Resolving the intrinsic bandgap and edge effect of Bil3 film epitaxially grown on graphene. Materials Today Physics, 2021, 20, 100454.	2.9	4
30	Recent Progress on 2D Kagome Magnets: Binary T <i>_m</i> Sn <i>_n</i> (T = Fe,) Tj ETQ	q0 0 0 rgB	T /Qverlock 1
31	High-strength scalable MXene films through bridging-induced densification. Science, 2021, 374, 96-99.	6.0	297
32	Fe, Cu co-doped BiOBr with improved photocatalytic ability of pollutants degradation. Journal of Alloys and Compounds, 2021, 881, 160391.	2.8	39
33	Electric-Field-Driven Negative Differential Conductance in 2D van der Waals Ferromagnet Fe ₃ GeTe ₂ . Nano Letters, 2021, 21, 9233-9239.	4.5	10
34	Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis. Nano Energy, 2020, 67, 104247.	8.2	55
35	Au-nanoparticle-supported ZnO as highly efficient photocatalyst for H2O2 production. Catalysis Communications, 2020, 134, 105860.	1.6	39
36	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163

#	Article	IF	CITATIONS
37	Liquid metals and their hybrids as stimulus–responsive smart materials. Materials Today, 2020, 34, 92-114.	8.3	78
38	Boron Nitride Nanotubes for Ammonia Synthesis: Activation by Filling Transition Metals. Journal of the American Chemical Society, 2020, 142, 308-317.	6.6	105
39	Application of organic-inorganic hybrids in lithium batteries. Materials Today Physics, 2020, 15, 100289.	2.9	15
40	Optimization of photocarrier dynamics and activity in phosphorene with intrinsic defects for nitrogen fixation. Journal of Materials Chemistry A, 2020, 8, 20570-20580.	5.2	26
41	Control of Photocarrier Separation and Recombination at Bismuth Oxyhalide Interface for Nitrogen Fixation. Journal of Physical Chemistry Letters, 2020, 11, 9304-9312.	2.1	13
42	Promoted Photocharge Separation in 2D Lateral Epitaxial Heterostructure for Visibleâ€Lightâ€Driven CO ₂ Photoreduction. Advanced Materials, 2020, 32, e2004311.	11.1	74
43	Hydrogen Terminated Germanene for a Robust Selfâ€Powered Flexible Photoelectrochemical Photodetector. Small, 2020, 16, e2000283.	5.2	58
44	Conversion of Intercalated MoO ₃ to Multiâ€Heteroatomsâ€Doped MoS ₂ with High Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e2001167.	11.1	82
45	Controlled hydrogenation into defective interlayer bismuth oxychloride via vacancy engineering. Communications Chemistry, 2020, 3, .	2.0	22
46	Experimental Realization of Two-Dimensional Buckled Lieb Lattice. Nano Letters, 2020, 20, 2537-2543.	4.5	12
47	In-situ grafting of N-doped carbon nanotubes with Ni encapsulation onto MOF-derived hierarchical hybrids for efficient electrocatalytic hydrogen evolution. Carbon, 2020, 163, 178-185.	5.4	56
48	Reversible Potassium Intercalation in Blue Phosphorene–Au Network Driven by an Electric Field. Journal of Physical Chemistry Letters, 2020, 11, 5584-5590.	2.1	5
49	Laserâ€Generated Supranano Liquid Metal as Efficient Electron Mediator in Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e2001571.	11.1	46
50	Facile synthesis of g-C3N4/BiOClxI1-x hybrids with efficient charge separation for visible-light photocatalysis. Ceramics International, 2020, 46, 10843-10850.	2.3	20
51	Spatial Scales of Heavy Meiyu Precipitation Events in Eastern China and Associated Atmospheric Processes. Geophysical Research Letters, 2020, 47, e2020GL087086.	1.5	9
52	Thickness tunable Kerr nonlinearity in BiOBr nanoflakes. , 2020, , .		0
53	BiOBr nanoflakes with strong Kerr nonlinearity towards hybrid integrated photonic devices., 2020,,.		1
54	New monatomic layer clusters for advanced catalysis materials. Science China Materials, 2019, 62, 149-153.	3.5	12

#	Article	IF	Citations
55	The Dependence of Bi ₂ MoO ₆ Photocatalytic Water Oxidation Capability on Crystal Facet Engineering. ChemPhotoChem, 2019, 3, 1246-1253.	1.5	23
56	General Synthetic Strategy for Pomegranate-like Transition-Metal Phosphides@N-Doped Carbon Nanostructures with High Lithium Storage Capacity., 2019, 1, 265-271.		35
57	Reversible Oxidation of Blue Phosphorus Monolayer on Au(111). Nano Letters, 2019, 19, 5340-5346.	4.5	27
58	Efficient Photocatalytic Hydrogen Peroxide Production over TiO2 Passivated by SnO2. Catalysts, 2019, 9, 623.	1.6	29
59	Evidence for the dynamic relaxation behavior of oxygen vacancies in Aurivillius Bi2MoO6 from dielectric spectroscopy during resistance switching. Journal of Materials Chemistry C, 2019, 7, 8915-8922.	2.7	10
60	Ultra-thin Ga nanosheets: analogues of high pressure Ga(<scp>iii</scp>). Nanoscale, 2019, 11, 17201-17205.	2.8	7
61	Highly nonlinear BiOBr nanoflakes for hybrid integrated photonics. APL Photonics, 2019, 4, .	3.0	31
62	A 2D metal–organic framework/Ni(OH) ₂ heterostructure for an enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 3599-3605.	2.8	131
63	Metal-ion bridged high conductive RGO-M-MoS2 (M = Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) composite electrocatalysts for photo-assisted hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 129-139.	10.8	63
64	Native Surface Oxides Featured Liquid Metals for Printable Self-Powered Photoelectrochemical Device. Frontiers in Chemistry, 2019, 7, 356.	1.8	6
65	Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A, 2019, 7, 13629-13634.	5.2	30
66	A Yolk–Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 8824-8828.	7.2	242
67	Realization of Strained Stanene by Interface Engineering. Journal of Physical Chemistry Letters, 2019, 10, 1558-1565.	2.1	25
68	Van der Waals integration of silicene and hexagonal boron nitride. 2D Materials, 2019, 6, 035001.	2.0	17
69	Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Materials, 2019, 19, 446-463.	9.5	89
70	Recent Progress on Twoâ€Dimensional Heterostructures for Catalytic, Optoelectronic, and Energy Applications. ChemElectroChem, 2019, 6, 2841-2851.	1.7	18
71	A non-enzymatic photoelectrochemical glucose sensor based on BiVO4 electrode under visible light. Sensors and Actuators B: Chemical, 2019, 291, 34-41.	4.0	67
72	Role of Charge Density Wave in Monatomic Assembly in Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1900367.	7.8	28

#	Article	IF	Citations
73	High Pressure Driven Isostructural Electronic Phase Separation in 2D BiOI. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	1.2	2
74	Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 1998-2004.	4.5	142
75	Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small, 2019, 15, e1805147.	5.2	100
76	Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catalysis Communications, 2019, 123, 69-72.	1.6	63
77	Promoting photoreduction properties via synergetic utilization between plasmonic effect and highly active facet of BiOCl. Nano Energy, 2019, 57, 398-404.	8.2	52
78	Monolayer Epitaxial Heterostructures for Selective Visibleâ€Lightâ€Driven Photocatalytic NO Oxidation. Advanced Functional Materials, 2019, 29, 1808084.	7.8	76
79	Boosting Visible-Light-Driven Photo-oxidation of BiOCl by Promoted Charge Separation via Vacancy Engineering. ACS Sustainable Chemistry and Engineering, 2019, 7, 3010-3017.	3.2	101
80	Selective Ferroelectric BiOI/Bi ₄ Ti ₃ O ₁₂ Heterostructures for Visible Light-Driven Photocatalysis. Journal of Physical Chemistry C, 2019, 123, 517-525.	1.5	36
81	Recent progress on liquid metals and their applications. Advances in Physics: X, 2018, 3, 1446359.	1.5	85
82	Improving the Photo-Oxidative Performance of Bi ₂ MoO ₆ by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition. ACS Applied Materials & English &	4.0	44
83	Defect Sites-Rich Porous Carbon with Pseudocapacitive Behaviors as an Ultrafast and Long-Term Cycling Anode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9353-9361.	4.0	91
84	s-p orbital hybridization: a strategy for developing efficient photocatalysts with high carrier mobility. Science Bulletin, 2018, 63, 465-468.	4.3	37
85	Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catalysis, 2018, 8, 4288-4293.	5.5	141
86	Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. Journal of Materials Chemistry A, 2018, 6, 2193-2199.	5.2	232
87	MoS ₂ /TiO ₂ heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy and Environmental Science, 2018, 11, 106-114.	15.6	326
88	Superhydrophobic Shape Memory Polymer Arrays with Switchable Isotropic/Anisotropic Wetting. Advanced Functional Materials, 2018, 28, 1705002.	7.8	166
89	Realization of flat band with possible nontrivial topology in electronic Kagome lattice. Science Advances, 2018, 4, eaau4511.	4.7	131
90	Boosting Sodium Storage of Doubleâ€Shell Sodium Titanate Microspheres Constructed from 2D Ultrathin Nanosheets via Sulfur Doping. Advanced Materials, 2018, 30, e1804157.	11.1	79

#	Article	IF	CITATIONS
91	Photocatalytic Reduction on Bismuth-Based $\langle i \rangle p \langle j \rangle$ -Block Semiconductors. ACS Sustainable Chemistry and Engineering, 2018, 6, 15936-15953.	3.2	62
92	Electronic Band Engineering in Elemental 2D Materials. Advanced Materials Interfaces, 2018, 5, 1800749.	1.9	16
93	Direct cation exchange of surface ligand capped upconversion nanocrystals to produce strong luminescence. Chemical Communications, 2018, 54, 9587-9590.	2.2	13
94	Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chemical Engineering Journal, 2018, 353, 636-644.	6.6	56
95	A Liquidâ€Metalâ€Based Magnetoactive Slurry for Stimuliâ€Responsive Mechanically Adaptive Electrodes. Advanced Materials, 2018, 30, e1802595.	11.1	106
96	Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. Advanced Energy Materials, 2018, 8, 1801257.	10.2	242
97	Dirac Signature in Germanene on Semiconducting Substrate. Advanced Science, 2018, 5, 1800207.	5.6	59
98	Band Gap Modulated by Electronic Superlattice in Blue Phosphorene. ACS Nano, 2018, 12, 5059-5065.	7.3	92
99	Comprehensive New Insights and Perspectives into Tiâ€Based Anodes for Nextâ€Generation Alkaline Metal (Na ⁺ , K ⁺) Ion Batteries. Advanced Energy Materials, 2018, 8, 1801888.	10.2	142
100	Enhanced Photocatalytic Activity of Bi 24 O 31 Br 10: Constructing Heterojunction with BiOl. Journal of Materials Science and Technology, 2017, 33, 281-284.	5.6	31
101	Cooperative Electron–Phonon Coupling and Buckled Structure in Germanene on Au(111). ACS Nano, 2017, 11, 3553-3559.	7.3	75
102	The origin of enhanced photocatalytic activities of hydrogenated TiO ₂ nanoparticles. Dalton Transactions, 2017, 46, 10694-10699.	1.6	24
103	Depth-profiling of Yb ³⁺ sensitizer ions in NaYF ₄ upconversion nanoparticles. Nanoscale, 2017, 9, 7719-7726.	2.8	36
104	Construction of 2D lateral pseudoheterostructures by strain engineering. 2D Materials, 2017, 4, 025102.	2.0	31
105	Efficient visible-light photocatalysts by constructing dispersive energy band with anisotropic p and s-p hybridization states. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 93-100.	3.2	28
106	Improving the photo-oxidative capability of BiOBr via crystal facet engineering. Journal of Materials Chemistry A, 2017, 5, 8117-8124.	5.2	163
107	Role of Atomic Interaction in Electronic Hybridization in Two-Dimensional Ag ₂ Ge Nanosheets. Journal of Physical Chemistry C, 2017, 121, 16754-16760.	1.5	13
108	Silicene: A Promising Anode for Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1606716.	11.1	179

#	Article	IF	CITATIONS
109	Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi ₄ (SiO ₄) ₃ Bi ₂ SiO ₅ nanostructures. Dalton Transactions, 2017, 46, 15582-15588.	1.6	25
110	Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chemical Communications, 2017, 53, 10906-10909.	2.2	328
111	Synthesis of Multilayer Silicene on Si(111)â^š3 × â^š3-Ag. Journal of Physical Chemistry C, 2017, 121, 27182-27190.	1.5	34
112	Enhanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. Nanoscale, 2017, 9, 18661-18667.	2.8	14
113	A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid. Nano Letters, 2017, 17, 7831-7838.	4.5	101
114	Indirect-Direct Band Transformation of Few-Layer BiOCl under Biaxial Strain. Journal of Physical Chemistry C, 2016, 120, 8589-8594.	1.5	29
115	Nanodroplets for Stretchable Superconducting Circuits. Advanced Functional Materials, 2016, 26, 8111-8118.	7.8	158
116	Observation of van Hove Singularities in Twisted Silicene Multilayers. ACS Central Science, 2016, 2, 517-521.	5.3	37
117	Point defects in epitaxial silicene on Ag(111) surfaces. 2D Materials, 2016, 3, 025034.	2.0	35
118	Quasi-freestanding epitaxial silicene on $Ag(111)$ by oxygen intercalation. Science Advances, 2016, 2, e1600067.	4.7	138
119	A ferroelectric photocatalyst Ag ₁₀ Si ₄ O ₁₃ with visible-light photooxidation properties. Journal of Materials Chemistry A, 2016, 4, 10992-10999.	5.2	46
120	Metal–silicene interaction studied by scanning tunneling microscopy. Journal of Physics Condensed Matter, 2016, 28, 034002.	0.7	9
121	Adsorption of Molecules on Silicene. Springer Series in Materials Science, 2016, , 215-242.	0.4	1
122	Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nature Communications, 2016, 7, 10254.	5.8	267
123	Investigation of electron-phonon coupling in epitaxial silicene by <i>in situ</i> Raman spectroscopy. Physical Review B, 2015, 91, .	1.1	67
124	Delocalized Surface State in Epitaxial Si(111) Film with Spontaneous â^š3 × â^š3 Superstructure. Scien Reports, 2015, 5, 13590.	tific 1.6	37
125	Pauli-limited effect in the magnetic phase diagram of FeSe <i>x</i> Te1â^' <i>x</i> thin films. Applied Physics Letters, 2015, 107, .	1.5	9
126	Modulation of Photocatalytic Properties by Strain in 2D BiOBr Nanosheets. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27592-27596.	4.0	130

#	Article	IF	CITATIONS
127	Honeycomb silicon: a review of silicene. Science Bulletin, 2015, 60, 1551-1562.	4.3	74
128	Tuning the Band Gap in Silicene by Oxidation. ACS Nano, 2014, 8, 10019-10025.	7.3	175
129	Interface Strain-Induced Multiferroicity in a SmFeO ₃ Film. ACS Applied Materials & SmPeO ₃ Film. ACS Applied Materials & SmPeO ₃	4.0	52
130	Bismuth Oxybromide with Reasonable Photocatalytic Reduction Activity under Visible Light. ACS Catalysis, 2014, 4, 954-961.	5.5	300
131	Unabridged phase diagram for single-phased FeSexTe1-x thin films. Scientific Reports, 2014, 4, 7273.	1.6	38
132	Effects of Oxygen Adsorption on the Surface State of Epitaxial Silicene on Ag(111). Scientific Reports, 2014, 4, 7543.	1.6	70
133	A dye-sensitized visible light photocatalyst-Bi24O31Cl10. Scientific Reports, 2014, 4, 7384.	1.6	91
134	The Impacts of Cation Stoichiometry and Substrate Surface Quality on Nucleation, Structure, Defect Formation, and Intermixing in Complex Oxide Heteroepitaxyâ€"LaCrO ₃ on SrTiO ₃ (001). Advanced Functional Materials, 2013, 23, 2953-2963.	7.8	48
135	Fabrication and characterization of textured Bi2Te3 thermoelectric thin films prepared on glass substrates at room temperature using pulsed laser deposition. Journal of Crystal Growth, 2013, 362, 247-251.	0.7	24
136	Manipulation of domain wall mobility by oxygen vacancy ordering in multiferroic YMnO3. Physical Chemistry Chemical Physics, 2013, 15, 20010.	1.3	32
137	Anisotropy of crystal growth mechanisms, dielectricity, and magnetism of multiferroic Bi2FeMnO6 thin films. Journal of Applied Physics, 2013, 113, 17D904.	1.1	8
138	Magnetostrictive properties of directional solidification Fe82Ga9Al9 alloy. Journal of Applied Physics, 2012, 111, 07A332.	1.1	3
139	Oxygen-vacancy effect on structural, magnetic, and ferroelectric properties in multiferroic YMnO3 single crystals. Journal of Applied Physics, 2012, 111, .	1.1	17
140	The magnetic structure of an epitaxial BiMn0.5Fe0.5O3 thin film on SrTiO3 (001) studied with neutron diffraction. Applied Physics Letters, 2012, 101, .	1.5	14
141	Magnetic properties and microstructures of iron oxide@mesoporous silica core-shell composite for applications in magnetic dye separation. Journal of Applied Physics, 2012, 111, 07B301.	1.1	10
142	Room Temperature Giant and Linear Magnetoresistance in Topological Insulator <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi 108,="" 2012,="" 266806.<="" letters,="" physical="" review="" td=""><td>>T&:/mml:</td><td>237 mi><mml:mr< td=""></mml:mr<></td></mml:mi></mml:msub></mml:math>	>T&:/mml:	237 mi> <mml:mr< td=""></mml:mr<>
143	Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Applied Physics Letters, 2011, 99, .	1.5	49
144	Fabrication, magnetic, and ferroelectric properties of multiferroic BiFeO3 hollow nanoparticles. Journal of Applied Physics, 2011, 109, .	1.1	28

#	Article	IF	CITATIONS
145	Effects of Cu and Fe doping on Raman spectra and on the structural and magnetic properties of ErMnO3. Journal of Applied Physics, 2011, 109, 07D710.	1.1	3
146	Magnetic and ferroelectric properties of multiferroic Bi2NiMnO6 nanoparticles. Journal of Applied Physics, 2011, 109, .	1.1	12
147	Simulation study on horizontal continuous casting process of copper hollow billet under rotating electromagnetic stirring Part 2—effects of electromagnetic and casting parameters on solidification process. Materials Science and Technology, 2011, 27, 684-692.	0.8	2
148	A way to enhance the magnetic moment of multiferroic bismuth ferrite. Journal Physics D: Applied Physics, 2010, 43, 242001.	1.3	89
149	Electronic structure and thermoelectric properties of Bi2Te3 crystals and graphene-doped Bi2Te3. Thin Solid Films, 2010, 518, e57-e60.	0.8	40
150	Enhanced magnetic moment in ErMnO ₃ by copper doping and negative magnetocapacitance effect. Journal Physics D: Applied Physics, 2010, 43, 325002.	1.3	12
151	Magnetic properties of Bi2FeMnO6: A multiferroic material with double-perovskite structure. Applied Physics Letters, 2010, 97, .	1.5	52
152	Lanthanum doped multiferroic DyFeO3: Structural and magnetic properties. Journal of Applied Physics, 2010, 107, .	1.1	43
153	Photocatalytic properties of BiOX (X = Cl, Br, and I). Rare Metals, 2008, 27, 243-250.	3.6	297
154	Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chemistry, 2006, 8, 183-190.	4.6	90
155	Raman Studies on Silicene and Germanene. Surface Innovations, 0, , 1-31.	1.4	2