E M Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8105934/publications.pdf

Version: 2024-02-01

99	16,651	51	94
papers	citations	h-index	g-index
138	138	138	16480 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science, 2011, 332, 220-224.	12.6	1,193
2	Anthropogenic contribution to global occurrenceÂof heavy-precipitation andÂhigh-temperature extremes. Nature Climate Change, 2015, 5, 560-564.	18.8	921
3	Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 2010, 3, 398-403.	12.9	851
4	Marine heatwaves under global warming. Nature, 2018, 560, 360-364.	27.8	821
5	Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave. Journal of Climate, 2007, 20, 5081-5099.	3.2	757
6	Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change, 2017, 7, 423-427.	18.8	596
7	A Review of the European Summer Heat Wave of 2003. Critical Reviews in Environmental Science and Technology, 2010, 40, 267-306.	12.8	564
8	Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 2016, 6, 827-835.	18.8	536
9	Contribution of land-atmosphere coupling to recent European summer heat waves. Geophysical Research Letters, 2007, 34, .	4.0	512
10	Differential climate impacts for policy-relevant limits to global warming: the case of 1.5â€Â°C and 2â€Â°C. Earth System Dynamics, 2016, 7, 327-351.	7.1	508
11	Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 2016, 6, 986-991.	18.8	444
12	Robust spatially aggregated projections of climate extremes. Nature Climate Change, 2013, 3, 1033-1038.	18.8	429
13	Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 2015, 10, 124003.	5.2	418
14	Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 2019, 9, 16063.	3.3	393
15	Observations: Atmosphere and Surface. , 2014, , 159-254.		350
16	Reconciling controversies about the â€~global warming hiatus'. Nature, 2017, 545, 41-47.	27.8	346
17	Past warming trend constrains future warming in CMIP6 models. Science Advances, 2020, 6, eaaz9549.	10.3	327
18	European climate response to tropical volcanic eruptions over the last half millennium. Geophysical Research Letters, 2007, 34, .	4.0	296

#	Article	IF	Citations
19	A scientific critique of the two-degree climate change target. Nature Geoscience, 2016, 9, 13-18.	12.9	282
20	A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters, 2017, 44, 1909-1918.	4.0	278
21	CMIP5 Climate Model Analyses: Climate Extremes in the United States. Bulletin of the American Meteorological Society, 2014, 95, 571-583.	3.3	270
22	Extreme heat waves under 1.5 °C and 2 °C global warming. Environmental Research Letters, 2018, 13 054006.	' 5 . 2	262
23	Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 2020, 11, 491-508.	7.1	255
24	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	7.1	236
25	Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Climate Dynamics, 2009, 33, 917-935.	3.8	225
26	Increasing probability of record-shattering climate extremes. Nature Climate Change, 2021, 11, 689-695.	18.8	224
27	Detection of spatially aggregated changes in temperature and precipitation extremes. Geophysical Research Letters, 2014, 41, 547-554.	4.0	217
28	Robust projections of combined humidity and temperature extremes. Nature Climate Change, 2013, 3, 126-130.	18.8	206
29	Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geoscientific Model Development, 2017, 10, 571-583.	3.6	203
30	Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 2016, 137, 201-216.	3.6	197
31	Contrasting urban and rural heat stress responses to climate change. Geophysical Research Letters, 2012, 39, .	4.0	170
32	Models agree on forced response pattern of precipitation and temperature extremes. Geophysical Research Letters, 2014, 41, 8554-8562.	4.0	159
33	Climate change now detectable from any single day of weather at global scale. Nature Climate Change, 2020, 10, 35-41.	18.8	154
34	The timing of anthropogenic emergence in simulated climate extremes. Environmental Research Letters, 2015, 10, 094015.	5.2	126
35	Warming of hot extremes alleviated by expanding irrigation. Nature Communications, 2020, 11, 290.	12.8	118
36	Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environmental Research Letters, 2018, 13, 054015.	5.2	111

#	Article	IF	CITATIONS
37	Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2626-2637.	3.3	108
38	Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environmental Research Letters, 2016, 11, 055007.	5.2	108
39	Detection of a Climate Change Signal in Extreme Heat, Heat Stress, and Cold in Europe From Observations. Geophysical Research Letters, 2019, 46, 8363-8374.	4.0	108
40	Changes in European summer temperature variability revisited. Geophysical Research Letters, 2012, 39, .	4.0	106
41	Chapter 1 Mediterranean climate variability over the last centuries: A review. Developments in Earth and Environmental Sciences, 2006, 4, 27-148.	0.1	105
42	Will Half a Degree Make a Difference? Robust Projections of Indices of Mean and Extreme Climate in Europe Under 1.5°C, 2°C, and 3°C Global Warming. Geophysical Research Letters, 2018, 45, 935-944.	4.0	93
43	Improved simulation of extreme precipitation in a highâ€resolution atmosphere model. Geophysical Research Letters, 2013, 40, 5803-5808.	4.0	92
44	Drought-induced decline in Mediterranean truffle harvest. Nature Climate Change, 2012, 2, 827-829.	18.8	90
45	Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Climate Dynamics, 2017, 48, 3425-3440.	3.8	88
46	Site-Specific Conjugation of Monomethyl Auristatin E to Anti-CD30 Antibodies Improves Their Pharmacokinetics and Therapeutic Index in Rodent Models. Molecular Pharmaceutics, 2015, 12, 1863-1871.	4.6	85
47	Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Science of the Total Environment, 2018, 631-632, 534-549.	8.0	79
48	Prospects and Caveats of Weighting Climate Models for Summer Maximum Temperature Projections Over North America. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4509-4526.	3.3	72
49	The record-breaking compound hot and dry 2018 growing season in Germany. Weather and Climate Extremes, 2020, 29, 100270.	4.1	72
50	Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Scientific Reports, 2019, 9, 3483.	3.3	67
51	Emergence of heat extremes attributable to anthropogenic influences. Geophysical Research Letters, 2016, 43, 3438-3443.	4.0	61
52	The effect of univariate bias adjustment on multivariate hazard estimates. Earth System Dynamics, 2019, 10, 31-43.	7.1	59
53	Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environmental Research Letters, 2018, 13, 044033.	5.2	52
54	In the observational record half a degree matters. Nature Climate Change, 2017, 7, 460-462.	18.8	51

#	Article	IF	Citations
55	Applying big data beyond small problems in climate research. Nature Climate Change, 2019, 9, 196-202.	18.8	51
56	Development of Future Heatwaves for Different Hazard Thresholds. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032070.	3.3	50
57	Uncovering the Forced Climate Response from a Single Ensemble Member Using Statistical Learning. Journal of Climate, 2019, 32, 5677-5699.	3.2	45
58	Quantifying uncertainties in projections of extremesâ€"a perturbed land surface parameter experiment. Climate Dynamics, 2011, 37, 1381-1398.	3.8	44
59	Biased Estimates of Changes in Climate Extremes From Prescribed SST Simulations. Geophysical Research Letters, 2018, 45, 8500-8509.	4.0	44
60	The influence of internal climate variability on heatwave frequency trends. Environmental Research Letters, 2017, 12, 044005.	5.2	42
61	Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability. Geophysical Research Letters, 2016, 43, 8189-8198.	4.0	40
62	Changing seasonality of moderate and extreme precipitation events in the Alps. Natural Hazards and Earth System Sciences, 2018, 18, 2047-2056.	3.6	40
63	Observed extreme precipitation trends and scaling in Central Europe. Weather and Climate Extremes, 2020, 29, 100266.	4.1	40
64	Autopsy of two mega-heatwaves. Nature Geoscience, 2014, 7, 332-333.	12.9	38
65	The usefulness of different realizations for the model evaluation of regional trends in heat waves. Geophysical Research Letters, 2013, 40, 5793-5797.	4.0	36
66	Lack of Change in the Projected Frequency and Persistence of Atmospheric Circulation Types Over Central Europe. Geophysical Research Letters, 2020, 47, e2019GL086132.	4.0	34
67	Declining pine growth in Central Spain coincides with increasing diurnal temperature range since the 1970s. Global and Planetary Change, 2013, 107, 177-185.	3.5	33
68	The influence of natural variability and interpolation errors on bias characterization in RCM simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,180.	3.3	33
69	Extreme heat-related mortality avoided under Paris Agreement goals. Nature Climate Change, 2018, 8, 551-553.	18.8	33
70	Intensification of summer precipitation with shorter time-scales in Europe. Environmental Research Letters, 2019, 14, 124050.	5.2	31
71	Robust changes in tropical rainy season length at 1.5 °C and 2 °C. Environmental Research Letters, 20 13, 064024.)18, 5.2	30
72	Comparing Australian heat waves in the CMIP5 models through cluster analysis. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3266-3281.	3.3	29

#	Article	IF	Citations
73	Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth System Dynamics, 2018, 9, 299-311.	7.1	29
74	Reduced heat exposure by limiting global warming to 1.5 °C. Nature Climate Change, 2018, 8, 549-551.	18.8	29
75	Global Freshwater Availability Below Normal Conditions and Population Impact Under 1.5 and 2°C Stabilization Scenarios. Geophysical Research Letters, 2018, 45, 9803-9813.	4.0	29
76	Emergent Constraints in Climate Projections: A Case Study of Changes in High-Latitude Temperature Variability. Journal of Climate, 2017, 30, 3655-3670.	3 . 2	27
77	Midlatitude atmospheric circulation responses under 1.5 and 2.0â€Â°C warming and implications for regional impacts. Earth System Dynamics, 2018, 9, 359-382.	7.1	27
78	Large-Scale Atmospheric Circulation Driving Extreme Climate Events in the Mediterranean and its Related Impacts., 2012,, 347-417.		25
79	Models are likely to underestimate increase in heavy rainfall in the extratropical regions with high rainfall intensity. Geophysical Research Letters, 2017, 44, 7401-7409.	4.0	25
80	Contributions of atmospheric circulation variability and data coverage bias to the warming hiatus. Geophysical Research Letters, 2015, 42, 2385-2391.	4.0	24
81	Volcanic-induced global monsoon drying modulated by diverse El Ni $ ilde{A}\pm 0$ responses. Science Advances, 2020, 6, .	10.3	24
82	Comparing interannual variability in three regional single-model initial-condition large ensembles (SMILEs) over Europe. Earth System Dynamics, 2020, 11, 1013-1031.	7.1	22
83	Future local climate unlike currently observed anywhere. Environmental Research Letters, 2017, 12, 084004.	5.2	19
84	Potential to Constrain Projections of Hot Temperature Extremes. Journal of Climate, 2017, 30, 9949-9964.	3 . 2	18
85	Heated debate on cold weather. Nature Climate Change, 2014, 4, 537-538.	18.8	17
86	On the Controlling Factors for Globally Extreme Humid Heat. Geophysical Research Letters, 2021, 48, e2021GL096082.	4.0	17
87	The potential of pattern scaling for projecting temperature-related extreme indices. International Journal of Climatology, 2014, 34, 18-26.	3 . 5	16
88	Very rare heat extremes: quantifying and understanding using ensemble re-initialization. Journal of Climate, 2021, , 1-46.	3.2	15
89	Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environmental Research Letters, 2020, 15, 094056.	5.2	15
90	Improved Consistency of Climate Projections over Europe after Accounting for Atmospheric Circulation Variability. Journal of Climate, 2017, 30, 7271-7291.	3.2	12

#	Article	IF	Citations
91	Limiting global warming to 1.5 \hat{A}° C will lower increases in inequalities of four hazard indicators of climate change. Environmental Research Letters, 2019, 14, 124022.	5.2	12
92	Changes in climate extremes in observations and climate model simulations. From the past to the future. , 2020 , , $31-57$.		11
93	Robust detection of forced warming in the presence of potentially large climate variability. Science Advances, 2021, 7, eabh4429.	10.3	11
94	Sensitivity of European extreme daily temperature return levels to projected changes in mean and variance. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3032-3044.	3.3	8
95	Urban multi-model climate projections of intense heat in Switzerland. Climate Services, 2021, 22, 100228.	2.5	7
96	A New Framework for Identifying and Investigating Seasonal Climate Extremes. Journal of Climate, 2021, 34, 7761-7782.	3.2	4
97	Planning for Compound Hazards during the COVID-19 Pandemic: The Role of Climate Information Systems. Bulletin of the American Meteorological Society, 2022, 103, E704-E709.	3.3	2
98	Towards dynamical adjustment of the full temperature distribution. , 2020, , .		1
99	Solar and Volcanic Forcing of Decadal- to Millennial-scale Climatic Variations. , 0, , 444-470.		0