Miguel Angel SanjuÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/810584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and Concrete Composites, 2005, 27, 537-546.	4.6	222
2	Experimental Study of Durability of Reactive Powder Concretes. Journal of Materials in Civil Engineering, 1996, 8, 1-6.	1.3	186
3	Sequestration of CO ₂ by Concrete Carbonation. Environmental Science & Technology, 2010, 44, 3181-3186.	4.6	127
4	Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cement and Concrete Composites, 2018, 90, 257-265.	4.6	94
5	Effect of silica fume fineness on the improvement of Portland cement strength performance. Construction and Building Materials, 2015, 96, 55-64.	3.2	91
6	Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study. Applied Sciences (Switzerland), 2020, 10, 339.	1.3	84
7	Calculation of chloride diffusivity in concrete from migration experiments, in non steady-state conditions. Cement and Concrete Research, 1994, 24, 1214-1228.	4.6	81
8	Effect of low modulus sisal and polypropylene fibre on the free and restrained shrinkage of mortars at early age. Cement and Concrete Research, 1999, 29, 1597-1604.	4.6	64
9	Coal Bottom Ash for Portland Cement Production. Advances in Materials Science and Engineering, 2017, 2017, 1-7.	1.0	53
10	La nueva norma europea de especificaciones de cementos comunes UNE-EN 197-1:2011. Materiales De Construccion, 2012, 62, 425-430.	0.2	49
11	Carbon Dioxide Uptake in the Roadmap 2050 of the Spanish Cement Industry. Energies, 2020, 13, 3452.	1.6	48
12	Carbonation resistance of one industrial mortar used as a concrete coating. Building and Environment, 2001, 36, 949-953.	3.0	39
13	Updating Carbon Storage Capacity of Spanish Cements. Sustainability, 2018, 10, 4806.	1.6	39
14	Carbon Dioxide Uptake by Mortars and Concretes Made with Portuguese Cements. Applied Sciences (Switzerland), 2020, 10, 646.	1.3	35
15	Carbonation of concretes in the Mexican Gulf. Building and Environment, 2000, 35, 145-149.	3.0	33
16	Polypropylene-fibre-reinforced mortar mixes: Optimization to control plastic shrinkage. Composites Science and Technology, 1997, 57, 655-660.	3.8	31
17	Effectiveness of Crack Control at Early Age on the Corrosion of Steel Bars in Low Modulus Sisal and Coconut Fibre-Reinforced Mortars. Cement and Concrete Research, 1998, 28, 555-565.	4.6	28
18	Title is missing!. Journal of Materials Science, 1997, 32, 6207-6213.	1.7	26

Miguel Angel SanjuÃin

#	Article	IF	CITATIONS
19	Influence of the age on air permeability of concrete. Journal of Materials Science, 1995, 30, 5657-5662.	1.7	23
20	Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Optimization. Sustainability, 2020, 12, 5783.	1.6	23
21	Aplicaciones y limitaciones del coeficiente K de eficacia de la adición de escoria de horno alto en el hormigón. Materiales De Construccion, 2011, 61, 303-313.	0.2	23
22	Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural pozzolan Portland cements. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325, 381-390.	0.7	22
23	Radiological impact of cement, concrete and admixtures in Spain. Radiation Measurements, 2011, 46, 734-735.	0.7	21
24	Carbon Dioxide Absorption by Blast-Furnace Slag Mortars in Function of the Curing Intensity. Energies, 2019, 12, 2346.	1.6	21
25	Influence of the water/cement ratio on the air permeability of concrete. Journal of Materials Science, 1996, 31, 2829-2832.	1.7	20
26	Standardization for an innovative world. Cement and Concrete Research, 2011, 41, 767-774.	4.6	19
27	Coal bottom ash natural radioactivity in building materials. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 91-99.	0.7	19
28	Efecto de la adición de mezclas de ceniza volante y ceniza de fondo procedentes del carbón en la resistencia mecánica y porosidad de cementos Portland. Materiales De Construccion, 2013, 63, 49-64.	0.2	19
29	Sustainable and Durable Performance of Pozzolanic Additions to Prevent Alkali-Silica Reaction (ASR) Promoted by Aggregates with Different Reaction Rates. Applied Sciences (Switzerland), 2020, 10, 9042.	1.3	18
30	Ultrasonic Pulse Velocity—Compressive Strength Relationship for Portland Cement Mortars Cured at Different Conditions. Crystals, 2020, 10, 133.	1.0	18
31	Oven-drying as a preconditioning method for air permeability test on concrete. Materials Letters, 1996, 27, 263-268.	1.3	17
32	Effect of curing temperature on corrosion of steel bars embedded in calcium aluminate mortars exposed to chloride solutions. Corrosion Science, 1998, 41, 335-350.	3.0	17
33	Reactive Powder Concrete: Durability and Applications. Applied Sciences (Switzerland), 2021, 11, 5629.	1.3	16
34	Assessment of radiation hazards of white and grey Portland cements. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 1169-1177.	0.7	15
35	A testing method for measuring plastic shrinkage in polypropylene fibre reinforced mortars. Materials Letters, 1994, 21, 239-246.	1.3	14
36	From NORM by-products to building materials. , 2017, , 183-252.		14

#	Article	IF	CITATIONS
37	Variability of the concrete air permeability coefficient with time. Building and Environment, 1997, 32, 51-55.	3.0	12
38	From raw materials to NORM by-products. , 2017, , 135-182.		11
39	A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors. Applied Radiation and Isotopes, 2018, 134, 470-476.	0.7	11
40	Radiation dose calculation of fine and coarse coal fly ash used for building purposes. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 1045-1054.	0.7	11
41	Reduced Carbonation, Sulfate and Chloride Ingress Due to the Substitution of Cement by 10% Non-Precalcined Bentonite. Materials, 2021, 14, 1300.	1.3	11
42	Performance of Ground Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Exposed to Natural Carbonation. Materials, 2021, 14, 3239.	1.3	11
43	Recent Advances in Coal Bottom Ash Use as a New Common Portland Cement Constituent. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2014, 24, 503-508.	0.5	10
44	Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain. Sustainability, 2021, 13, 11448.	1.6	10
45	Effect of polypropylene fibre reinforced mortars on steel reinforcement corrosion induced by carbonation. Materials and Structures/Materiaux Et Constructions, 1998, 31, 343-349.	1.3	9
46	Chloride Induced Reinforcement Corrosion in Mortars Containing Coal Bottom Ash and Coal Fly Ash. Materials, 2019, 12, 1933.	1.3	8
47	Combined effect of nano-SiO ₂ and nano-Fe ₂ 0 ₃ on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars. Materiales De Construccion, 2018, 68, 150.	0.2	8
48	Carbon dioxide uptake by pure Portland and blended cement pastes. Developments in the Built Environment, 2021, 8, 100063.	2.0	8
49	Fineness of Coal Fly Ash for Use in Cement and Concrete. Fuels, 2021, 2, 471-486.	1.3	8
50	Precast Concrete Pavements of High Albedo to Achieve the Net "Zero-Emissions―Commitments. Applied Sciences (Switzerland), 2022, 12, 1955.	1.3	7
51	Alkali Ion Concentration Estimations in Cement Paste Pore Solutions. Applied Sciences (Switzerland), 2019, 9, 992.	1.3	6
52	Effect of particle size and composition of granitic sands on the radiological behaviour of mortars. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 561-573.	0.9	6
53	Modeling of Corrosion Rate and Resistivity of Steel Reinforcement of Calcium Aluminate Cement Mortar. Advances in Civil Engineering, 2018, 2018, 1-9.	0.4	5
54	Coal ash Portland Cement Mortars Sulphate Resistance. Civil Engineering Journal (Iran), 2021, 7, 98-106.	1.2	5

Miguel Angel SanjuÃin

#	Article	IF	CITATIONS
55	Effect of the aggregate grading on the concrete air permeability. Materiales De Construccion, 2014, 64, e026.	0.2	5
56	ASSESSMENT OF A NEW PORTLAND CEMENT COMPONENT: GROUND COAL BOTTOM ASH. Dyna (Spain), 2018, 93, 192-196.	0.1	5
57	Model for predicting plastic shrinkage of polypropylene reinforced mortars. Journal of Materials Science, 1994, 29, 2821-2825.	1.7	4
58	Title is missing!. Journal of Materials Science, 2000, 35, 105-108.	1.7	4
59	Coal fly ash alkalis content characterization by means of a full factorial design. Materials Letters, 2016, 164, 528-531.	1.3	4
60	Durability of Blended Cements Made with Reactive Aggregates. Materials, 2021, 14, 2948.	1.3	4
61	Reactivity of Ground Coal Bottom Ash to Be Used in Portland Cement. J, 2021, 4, 223-232.	0.6	4
62	Mechanical Performance of Portland Cement, Coarse Silica Fume, and Limestone (PC-SF-LS) Ternary Portland Cements. Materials, 2022, 15, 2933.	1.3	4
63	A Ten-Year Study on Alkali Content of Coal Fly Ash. Fuels, 2022, 3, 365-374.	1.3	4
64	Modelling of the concrete air permeability evolution over time. Materials Letters, 1996, 27, 269-272.	1.3	3
65	Electrochemical method to assess the absorption of NaCl solutions in OPC and SRPC mortars. Building and Environment, 2000, 35, 595-601.	3.0	2
66	Radiological Characteristics of Carbonated Portland Cement Mortars Made with GGBFS. Materials, 2022, 15, 3395.	1.3	2
67	Natural Fluorite from Órgiva Deposit (Spain). A Study of Its Pozzolanic and Mechanical Properties. Crystals, 2021, 11, 1367.	1.0	1
68	Coal bottom ash natural radioactivity in building materials. , 2022, , 207-224.		1
69	Radiological assessment of iron silicate as a potential aggregate in concrete and mortars. Cement and Concrete Composites, 2022, 129, 104490.	4.6	1
70	Characterization of Mortars Made with Coal Ashes Identified as a Way Forward to Mitigate Climate Change. Crystals, 2022, 12, 557.	1.0	0