SÃ, ren Roi Midtgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/810583/publications.pdf

Version: 2024-02-01

68 papers 1,971 citations

201658 27 h-index 289230 40 g-index

80 all docs

80 docs citations

80 times ranked

2669 citing authors

#	Article	IF	CITATIONS
1	Mg $2+$ -dependent conformational equilibria in CorA and an integrated view on transport regulation. ELife, 2022, $11,\ldots$	6.0	10
2	Global fitting of multiple data frames from SEC–SAXS to investigate the structure of next-generation nanodiscs. Acta Crystallographica Section D: Structural Biology, 2022, 78, 483-493.	2.3	3
3	Structural model of tissue factor (TF) and TF-factor VIIa complex in a lipid membrane: A combined experimental and computational study. Journal of Colloid and Interface Science, 2022, 623, 294-305.	9.4	1
4	Lipid-bound ApoE3 self-assemble into elliptical disc-shaped particles. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183495.	2.6	3
5	Properdin oligomers adopt rigid extended conformations supporting function. ELife, 2021, 10, .	6.0	10
6	<i>Ab initio</i> determination of the shape of membrane proteins in a nanodisc. Acta Crystallographica Section D: Structural Biology, 2021, 77, 176-193.	2.3	4
7	Peptide discs as precursors of biologically relevant supported lipid bilayers. Journal of Colloid and Interface Science, 2021, 585, 376-385.	9.4	8
8	Structural and Biophysical Properties of Supercharged and Circularized Nanodiscs. Langmuir, 2021, 37, 6681-6690.	3.5	13
9	Order and disorder—An integrative structure of the full-length human growth hormone receptor. Science Advances, 2021, 7, .	10.3	25
10	Oligomerization of Pharmaceutically Relevant Insulin Analogues for Varying Concentration and Salinity Revealed by Small-Angle X-ray Scattering. Molecular Pharmaceutics, 2021, 18, 3272-3280.	4.6	0
11	Probing solution structure of the pentameric ligand-gated ion channel GLIC by small-angle neutron scattering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	7
12	Aescin – a natural soap for the formation of lipid nanodiscs with tunable size. Soft Matter, 2021, 17, 1888-1900.	2.7	10
13	Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations. Analytical Chemistry, 2020, 92, 1081-1088.	6.5	14
14	Assessment of structure factors for analysis of small-angle scattering data from desired or undesired aggregates. Journal of Applied Crystallography, 2020, 53, 991-1005.	4.5	26
15	The intracellular lipid-binding domain of human Na+/H+ exchanger 1 forms a lipid-protein co-structure essential for activity. Communications Biology, 2020, 3, 731.	4.4	11
16	A highâ€effinity, bivalent <scp>PDZ</scp> domain inhibitor complexes <scp>PICK</scp> 1 to alleviate neuropathic pain. EMBO Molecular Medicine, 2020, 12, e11248.	6.9	20
17	Structural Insight into the Self-Assembly of a Pharmaceutically Optimized Insulin Analogue Obtained by Small-Angle X-ray Scattering. Molecular Pharmaceutics, 2020, 17, 2809-2820.	4.6	3
18	Efficient refolding and reconstitution of tissue factor into nanodiscs facilitates structural investigation of a multicomponent system on a lipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183214.	2.6	3

#	Article	IF	CITATIONS
19	Dispersion state of TiO2 pigment particles studied by ultra-small-angle X-ray scattering revealing dependence on dispersant but limited change during drying of paint coating. Progress in Organic Coatings, 2020, 142, 105590.	3.9	13
20	Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution. PLoS Computational Biology, 2020, 16, e1007870.	3.2	76
21	Protocol for Investigating the Interactions Between Intrinsically Disordered Proteins and Membranes by Neutron Reflectometry. Methods in Molecular Biology, 2020, 2141, 569-584.	0.9	2
22	Structure and dynamics of a nanodisc by integrating NMR, SAXS and SANS experiments with molecular dynamics simulations. ELife, 2020, 9, .	6.0	49
23	Aescin-Induced Conversion of Gel-Phase Lipid Membranes into Bicelle-like Lipid Nanoparticles. Langmuir, 2019, 35, 16244-16255.	3.5	22
24	PSX, Protein–Solvent Exchange: software for calculation of deuterium-exchange effects in small-angle neutron scattering measurements from protein coordinates. Journal of Applied Crystallography, 2019, 52, 1427-1436.	4.5	5
25	Circularized and solubilityâ€enhanced <scp>MSP</scp> s facilitate simple and highâ€yield production of stable nanodiscs for studies of membrane proteins in solution. FEBS Journal, 2019, 286, 1734-1751.	4.7	36
26	Structure and Dynamics of the Central Lipid Pool and Proteins of the Bacterial Holo-Translocon. Biophysical Journal, 2019, 116, 1931-1940.	0.5	22
27	Distinct α-Synuclein:Lipid Co-Structure Complexes Affect Amyloid Nucleation through Fibril Mimetic Behavior. Biochemistry, 2019, 58, 5052-5065.	2.5	12
28	Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP3) on a lipid bilayer. Colloids and Surfaces B: Biointerfaces, 2019, 173, 202-209.	5.0	22
29	On the Calculation of SAXS Profiles of Folded and Intrinsically Disordered Proteins from Computer Simulations. Journal of Molecular Biology, 2018, 430, 2521-2539.	4.2	64
30	Invisible detergents for structure determination of membrane proteins by smallâ€angle neutron scattering. FEBS Journal, 2018, 285, 357-371.	4.7	52
31	Comprehensive Study of the Self-Assembly of Phospholipid Nanodiscs: What Determines Their Shape and Stoichiometry?. Langmuir, 2018, 34, 12569-12582.	3.5	30
32	Introducing SEC–SANS for studies of complex self-organized biological systems. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1178-1191.	2.3	42
33	Analysis of small-angle scattering data using model fitting and Bayesian regularization. Journal of Applied Crystallography, 2018, 51, 1151-1161.	4.5	16
34	Selective N-terminal acylation of peptides and proteins with a Gly-His tag sequence. Nature Communications, 2018, 9, 3307.	12.8	45
35	A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6020-E6029.	7.1	51
36	Size-exclusion chromatography small-angle X-ray scattering of water soluble proteins on a laboratory instrument. Journal of Applied Crystallography, 2018, 51, 1623-1632.	4.5	36

#	Article	IF	CITATIONS
37	Small-angle neutron scattering studies on the AMPA receptor GluA2 in the resting, AMPA-bound and GYKI-53655-bound states. IUCrJ, 2018, 5, 780-793.	2.2	9
38	Folding Topology of a Short Coiledâ€Coil Peptide Structure Templated by an Oligonucleotide Triplex. Chemistry - A European Journal, 2017, 23, 9297-9305.	3.3	13
39	GUB06â€046, a novel secretin/glucagonâ€like peptide 1 coâ€agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice. Journal of Peptide Science, 2017, 23, 845-854.	1.4	22
40	Peptide–oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic. Nature Communications, 2016, 7, 12294.	12.8	39
41	Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins. Soft Matter, 2016, 12, 5937-5949.	2.7	37
42	A de Novoâ€Designed Monomeric, Compact Threeâ€Helixâ€Bundle Protein on a Carbohydrate Template. ChemBioChem, 2015, 16, 1905-1918.	2.6	2
43	Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. Membranes, 2015, 5, 307-351.	3.0	54
44	PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice. PLoS ONE, 2015, 10, e0129310.	2.5	22
45	Small-angle scattering determination of the shape and localization of human cytochrome P450 embedded in a phospholipid nanodisc environment. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2412-2421.	2.5	47
46	Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 241-254.	3.6	31
47	An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 592-605.	2.5	34
48	Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering. Structure, 2015, 23, 1258-1270.	3.3	34
49	Response to The Challenges of Polydisperse SAXS Data Analysis: Two Different SAXS Studies of PICK1 Produce Different Structural Models. Structure, 2015, 23, 1969-1970.	3.3	4
50	Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1-POPC Discoidal Particles. Biophysical Journal, 2015, 109, 308-318.	0.5	26
51	Selecting analytical tools for characterization of polymersomes in aqueous solution. RSC Advances, 2015, 5, 79924-79946.	3.6	38
52	Quantification of the information in small-angle scattering data. Journal of Applied Crystallography, 2014, 47, 2000-2010.	4.5	19
53	Small-angle scattering gives direct structural information about a membrane protein inside a lipid environment. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 371-383.	2.5	58
54	A compact time-of-flight SANS instrument optimised for measurements of small sample volumes at the European Spallation Source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 764, 133-141.	1.6	9

#	Article	IF	Citations
55	Self-assembling peptides form nanodiscs that stabilize membrane proteins. Soft Matter, 2014, 10, 738-752.	2.7	65
56	Stealth carriers for low-resolution structure determination of membrane proteins in solution. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 317-328.	2.5	63
57	Selfâ€assembly of designed coiled coil peptides studied by smallâ€angle Xâ€ay scattering and analytical ultracentrifugation. Journal of Peptide Science, 2013, 19, 283-292.	1.4	10
58	<i>WillItFit</i> : a framework for fitting of constrained models to small-angle scattering data. Journal of Applied Crystallography, 2013, 46, 1894-1898.	4.5	61
59	Lipid-Protein Interactions in Nanodiscs: How to Enhance Stability. Biophysical Journal, 2012, 102, 236a.	0.5	0
60	Perfluoroalkyl Chains Direct Novel Self-Assembly of Insulin. Langmuir, 2012, 28, 593-603.	3.5	11
61	Metal Ion Controlled Self-Assembly of a Chemically Reengineered Protein Drug Studied by Small-Angle X-ray Scattering. Langmuir, 2012, 28, 12159-12170.	3.5	14
62	Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1694-1698.	2.6	31
63	Small-angle scattering from phospholipid nanodiscs: derivation and refinement of a molecular constrained analytical model form factor. Physical Chemistry Chemical Physics, 2011, 13, 3161-3170.	2.8	57
64	Reconciliation of opposing views on membrane–sugar interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1874-1878.	7.1	126
65	Elliptical Structure of Phospholipid Bilayer Nanodiscs Encapsulated by Scaffold Proteins: Casting the Roles of the Lipids and the Protein. Journal of the American Chemical Society, 2010, 132, 13713-13722.	13.7	117
66	Structure Parameters of Synaptic Vesicles Quantified by Small-Angle X-Ray Scattering. Biophysical Journal, 2010, 98, 1200-1208.	0.5	43
67	3―Instead of 4â€Helix Formation in a De Novo Designed Protein in Solution Revealed by Smallâ€Angle Xâ€ray Scattering. ChemBioChem, 2008, 9, 2663-2672.	2.6	12
68	High-Throughput Small Angle X-ray Scattering from Proteins in Solution Using a Microfluidic Front-End. Analytical Chemistry, 2008, 80, 3648-3654.	6.5	88