
Beidou Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8105137/publications.pdf Version: 2024-02-01

REIDOU XI

#	Article	IF	CITATIONS
1	Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process. Applied Catalysis B: Environmental, 2022, 312, 121418.	10.8	25
2	Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Environment International, 2020, 135, 105380.	4.8	77
3	Dissolved Silicate Enhances the Oxidation of Chlorophenols by Permanganate: Important Role of Silicate-Stabilized MnO ₂ Colloids. Environmental Science & Technology, 2020, 54, 10279-10288.	4.6	41
4	Synergistic High-flux Oil–Saltwater Separation and Membrane Desalination with Carbon Quantum Dots Functionalized Membrane. ACS Sustainable Chemistry and Engineering, 2019, 7, 13708-13716.	3.2	46
5	Role of Humic Acid Chemical Structure Derived from Different Biomass Feedstocks on Fe(III) Bioreduction Activity: Implication for Sustainable Use of Bioresources. Catalysts, 2019, 9, 450.	1.6	6
6	Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields. Science of the Total Environment, 2019, 676, 378-386.	3.9	20
7	Polarity and Molecular Weight of Compost-Derived Humic Acids Impact Bio-dechlorination of Pentachlorophenol. Journal of Agricultural and Food Chemistry, 2019, 67, 4726-4733.	2.4	11
8	Molecularâ€weightâ€dependent redox cycling of humic substances of paddy soils over successive anoxic and oxic alternations. Land Degradation and Development, 2019, 30, 1130-1144.	1.8	3
9	p-Arsanilic acid degradation and arsenic immobilization by a disilicate-assisted iron/aluminum electrolysis process. Chemical Engineering Journal, 2019, 368, 428-437.	6.6	28
10	Increased suppression of methane production by humic substances in response to warming in anoxic environments. Journal of Environmental Management, 2018, 206, 602-606.	3.8	17
11	Discrepant responses of the electron transfer capacity of soil humic substances to irrigations with wastewaters from different sources. Science of the Total Environment, 2018, 610-611, 333-341.	3.9	23
12	Responses of the electron transfer capacity of soil humic substances to agricultural land-use types. RSC Advances, 2018, 8, 32588-32596.	1.7	6
13	Polarity and molecular weight of compost-derived humic acid affect Fe(III) oxides reduction. Chemosphere, 2018, 208, 77-83.	4.2	34
14	Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2018, 52, 8627-8637.	4.6	240
15	Intercropping wheat and maize increases the uptake of phthalic acid esters by plant roots from soils. Journal of Hazardous Materials, 2018, 359, 9-18.	6.5	22
16	Increased Electron-Accepting and Decreased Electron-Donating Capacities of Soil Humic Substances in Response to Increasing Temperature. Environmental Science & Technology, 2017, 51, 3176-3186.	4.6	81
17	Disilicate-Assisted Iron Electrolysis for Sequential Fenton-Oxidation and Coagulation of Aqueous Contaminants. Environmental Science & Technology, 2017, 51, 8077-8084.	4.6	35
18	Response of humic-reducing microorganisms to the redox properties of humic substance during composting. Waste Management, 2017, 70, 37-44.	3.7	56

Beidou Xi

#	Article	IF	CITATIONS
19	Effect of Arsenic on the Formation and Adsorption Property of Ferric Hydroxide Precipitates in ZVI Treatment. Environmental Science & Technology, 2017, 51, 10100-10108.	4.6	46
20	Compost-derived humic acids as regulators for reductive degradation of nitrobenzene. Journal of Hazardous Materials, 2017, 339, 378-384.	6.5	62
21	Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. Bioresource Technology, 2016, 219, 204-211.	4.8	98